Course Code: 4MSCM1

Course: Functional Analysis-II

Credit: 4

Last Submission Date: October 31, (for January session)

April 30 (for July Session)

Max. Marks:-70 Min. Marks:-25

Note:-attempt all questions.

- Que.1 State & prove Closed graph theorem.
- Que.2 State & prove Hahn Banach theorem for linear space.
- Que.3 If X is an inner product space and $x, y \in X$. Then

Ix,
$$yl \le II \times II \cdot IIyII$$

- Que.4 Use Cauchy's inequality to prove Schwarz's inequality in the Hilbert space l_2^n .
- Que.5 Let $\{e_1, e_2, \dots, e_n\}$ be a finite orthonormal set in a Hilbert space H and x be any element to H. Then $\sum_{i=1}^{n} |(x, e_i)|^2 \le ||x||^2$
- Que.6 State & prove Projection theorem.
- Que.7 State & prove Riesz Representation theorem for continuous linear function on a Hilbert space.
- Que.8 Every Hilbert space H is reflexive.
- Que.9 Let T be an operator on H define the adjoint T^* of T. the mapping $T \to T^*$ of B(H) info itself has the following properties, for $T, T_1, T_2 \in B$ (H) and $\alpha \in C$ we have
 - (1) $(T_{1} + T_{2}) *= T_{1} * + T_{2} *$
 - (2) $(\propto T) *= \overline{\propto} T*$
 - (3) $(T_1 T_2) * = T_2 * T_1 *$
 - (4) $T^{**}=(T^*)^*=T$
 - (5) II T*II = II T II
 - (6) $II T * T II = II T II^2$
- Que.10 If T_1 and T_2 are normal operators on a Hilbert space H with the property that either commutes with the adjoint of the other, then $T_{1+}T_2$ and $T_{1-}T_2$ are normal.