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Differentiation and
Expansion of Functions

S IS

Chapter Includes:
1.

Partial Differentiations

Homogeneous Function

Euler’s Theorem on Homogeneous Functions
Total Differential Coefficient

Change of Variables

1.1 PARTIAL DIFFERENTIATIONS

1.1.1 FUNCTIONS OF TWO VARIABLES : We know that the quantities like area,
volume depend on two and three other quantities, respectively. For example :

" Areaofa triangle = —21- x base x corresponding attitude

Area of a rectangle = length x breadth
Volume of a parallelopiped = length x breadth x height

Differentiation and
Expansion of Functions
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In terms of functions we can say that area is a function of two variables, where as
volumes is a function of three variables.

Let A, B and C are three sets such that A represents base of a triangle and B represents
attitude of the corresponding bases of the triangle and C represent the area of
triangle, then we can define a function f from the set A x B to C. This function f'is

_ called function of two variables.

Definition 1.1: Let A, B and C are any three non-cmpty sets, then the function f Ax
B—» C, is called a function of two variables, where

ac A and beB then 3 ceC,suchthat f{a,b)=c

The set A x B is called domain of the function and C is called codomain of the
function.

In general we write = f(x, y ) for a function of two variables x and y. The variables x,
and y, are independent where as u is dependent. The function u is called single valued.

Similarly the function of three or more variables can be expressed as
u= f(x,y2)
or v=f(x),x;,...x,)
Limit of a function of two variables : If function f = (x, y)issaidto be limit L, at
(a,b) if for every e> 0 however small there exists 8, such that
|f(x,y) - L|<c where|(x—a)|< & and |(y-b)<5
we also write im f(x,y)=L
Continuity of function of two variables : A function f =(x,y) is said to be

continuous at (a, b) if for every €>0 however small there exists & > 0, such that

f(xy) - f(ab)<e
a-8<x<a+d and b-8< y<b+d
Alternatively, f(x,y) is continuous at (a,b)if
limy, ) oo by / (x.y)= f(ab)
or  lim ) o) S(8+h b+ k)= f(a,b)
PARTIAL DERIVATIVES (OR PARTIAL DIFFERENTIAL COEFFICIENT):

Let f(x, y)be a function of two independent varisble x and y, then
. fx+hy) f(xy)
imy, o s

partialdifferential coefficient of f(x,y) with respect to x, when y is treated as

if exists, is called partial derivatives or
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constant. It is denoted by o or f,. similarly lim, , , if exists

is called partial derivative or differential coefficient of f(x, ) w1th respect y, wheb x
is treated as constant. It is denoted by g or f..
ay Y

The process of finding the partial derivative or partial differential coefficient, is
known as partial differentiation.

It is clear that the partial derivative of a function of two variables keeping one variable
as constant is same as the ordinary derivatives.

The other higher partial derivative of £, f, [org-f—,%] with respect to x an denoted
x

9* a*f o
by fn,[orax—{, Jyx or a&%’ 6y_{J

& ] [6f]_62f 0 [afJ_ 8% f
or o | e |2 e Y e i
ox) ox? ox\dy) oxdy

ﬁ_(ﬁijzﬂ ?_[Qf,]=a’__f
y\ox) yax' y\oy) o
ol f 8f
Oxdy ayax

SOLVED EXAMPLES

2
Example 1 : If u =sin(x + y). Find — ou du 0'u O'u Ou , and show that

o’ oy’ ox? oyl yox
2 2 2 2
LR U and 6—+ =, -a—2—u-+u=0, ~a—u—+u=0

3x6y Qvax o’ ay? oxdy )
Solution : Giveny =sin(x + y)

Remark :

2 ¢ -
0" it P2 4 , It is not always possible that ——
oydx  oxdy

Differentiating above partially w. r. t. x
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=—y
2
= gx—:+u=0,

2
. RS
From above it is clear that,
o’u _ 0w 0w 0w

dyox  xdy x: oy’

. Ou u O ou *u ou

Example2:Ifu= log(x - y) Find
x+y

Solution : Given 4= log(']r s
x+ y

Differentiating above p. w.r. t. X

'Qu_=(x+ y)x{l(x+y)—l(x*y)
& (x-y) (x+ y)2

ou_ 2y

B o8 _yz)’

2%y ((xz—y2)+2xx2y
a2 - (xz—yz)z

L]

Pu Ay

ot (xz _yz)z’

o%u _2( = ——y2)+2yx2y
")

d%u =2x2 -_2y2 +4y2<
@y
d*u ] 2x2+23,r2
)

},

o ot dyax’ dy' oy’ axdy

|

Differentiating above p. w.r. 1. y

u_(x+y) {-l(x +y)-1(x-y)

5 (x—y) (x+y)2
?Ez{—x-y—-x+ v}
- Oy x2+y2
@= 2x
ay xz_yz

}



2x+y) | 21+)’)
(*-7) *-)
82u 62
" oyor oy

Alternatively, u = log(x - y)-log(x + )
(Find u,, Uy, Uy, uyx)
o*u _ o%u
Example 3 : If u = xtan y + y tanx then prove that ——
xay 6y6x

Solution : We have u=xtany+ ytanx

Differentiating above p. w. I. t. X
Ou 2
—=tan y + ysec” x,
x 07

2
- 2 e? yaseo’x | A

Oyox

and ———=8ec” y+sec” x | C . (2)

u  %u

0’u _ d%u
Example 4 : If u= y*, thenvenfythat-————
oxdy  Oyox

Solution : We have u = y*,
T, o _
= Yy Yy oy Xy

62

azu 5 x~1 x I -

——= X logy+y x—

Oyox ¥y Oyox
=" logy+y™! = (1+xlogy)y™"

- yr—l,-i-X'yI_l logy

= (1+xlogx)y*™

Differentiation and
Expansion of Functions
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T

oxdy  dydx
Example 5 : If u=log 4 then verify that ﬂ= ﬂ
231y ' dxdy  Oyox
Solution : We have u=log——2—
x“+y

u=logx+logy- log(x2 + yz)

Differentiating partially w. r. t. X,

Similarly,
@1’1— 221: 3 and | @;i_ 22y ;
& x x+y & y x’+y
w_Fy-ut L w4y -0y
ox x(x2+y2) & oy x2+y2)
u_ y-x’ " ou_ _xt-y
| J;(x2+y2) o y(x2+y2’)

ou_W(245) (7)o 2ot r) ()

‘ 2 ‘ 2
ox0y i (xz +yz) OxBy y? x2+yz)
Pu 25’ + 2t -1t -2y u _ Wy’ -l y+ 2
dydx X (xz +y2)2 OxBy ¥ x2+y2)2
8%u | 4xty *u 4xy

oyox £ (xz+yz)2 G ayax 1 (x2+y2)2

0%u 451y _ Ay 0*u 4xy°

- g T M = 2
Oyéx £ x2+y2)' (x2+y2)' Oyox ot x2+y2)
: e,
(x2 + yz)z
., From above we have

o%u -y d%u

dyox  ydx



Example 6 : Ifu=x’y+ 2 + z°x, then prove that 3, y@+ o
r4

—=4u
oz
Solution : Wehave u=x’y+ y’z+ 2%, (1)

fu L5 i3 '

. —=3Xx"y+ oW i
5 WO Rk )
é‘E=Jc3+3y?‘z ..(3)
oy
M ¥ +32%x ()
0z

Multiplying (2), (3), (4) respectively by x, y and z and adding we get,

Ou 2 i 8 2 3 2
X—+y—+z—=3x“y+z  +x +3y°z+y +3z°x
o T ez e

=4(x’y+ y3z+ z3x)
Ou

or x—+ ygu—+z§u—=4u from (1)
ox "oy oz

2 2
Example7 . Ifuzf(x+a3;)+¢(x—aj.1) thenprovc that x—%;i za?.g_x_l;

Solution : u= f(x + ay)+¢(x—ay)

%=f’_(x+ay)+¢'(x-ay)

? '
and Ex—;zf"(x+ay)+¢'(x—ay)
Now, g——=af'(x+ay)+a¢’(x-ay) '
azu_ 2w T, m
b-y—-z-—-a _f(x+ay)+a ¢ (x—ay)
from equation (1) and (2) we have,
%u 5 0%u .
o o’

Examples:lfu=sin_'(£]+tan"l e then prove that x@+yé=0
x ) ox " oy

D)

(2

Differentiation and
Expansion of Functions
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Solution : Given wu=sin" ( J+tan_l{xJ
x y

Differentiating above partially w. r. t. x
)
o[- (1+J%z) y

yxl

_ 4
x21/1—%+12+y2 b4
x1lx —y x +y

xy

Jﬁ iy | A

or

il

@

&I%’ i

We also have

[—
[

._
|
G
.
x
L
+
+v—-
b
SO

i

x
|
|

P R
&N

| R

\cN

o | —

HN

+

%M

@
<
g

<

sl 2)

x2+y2

=g
'

!
“tu

Adding (1) and (2) we get,

Ou
—+y—=0
xax g

- Ou Ou
Example 9 : If u =sin™’ = then prove that x—+ y— =0
' x+y ox "oy

Solution : Given u= sml[x y} '
: x+y

Differentiating above partially w.r. t. X

. Ou_ 1 {l(x+y) I(x- y)}
- & Jz (x+y)?

fod 2
x+y



or gu_z (x+y) xx-[-y—x.[_y
ox \[12 +y +ay-x-y+29  (x +'y)2
L
o Wxy(x+y)

or 2 uld Vo

ENT)

1 e
Similarly, L 1 2-[ i£+)) (zch y)}
» | (1= (x+7)
x+y
or = (x+) x-x—y—x:-y
i J¢l+y2+2ry—12‘}’2 +2xy (x+y)
Ou 1  -2x -
v @)y Jo+y)
_y_Qu_= ‘-xy . Jy
o (x+yNo  (x+y
Adding (1) and (2) we get,
xa‘f'yé;:o
. = 2 al 62
Examplelll:lf.v=(x2'*l'y2+Zz)yzthenpm“'ethat%;*‘a;'*a}:o

Solution : Given v= (x2 +y2 4+ Z2)_}3
Z_i;'_z _%( Tryts Zz)_% x 2x —(ch +yi+ zz)‘% .1
2

or | %:- = (x2 $y' 4 zz)'%[3xz ~(x2 Fyta zz)]

2

g—x-; = (J:2 + yz + zz)_%[sz -y2 - zz]

Similarly %223 ='(x2 +y% 4 22)‘%[2y2 38 _zz]

D)

2

A1)

2)

Differentiation and

Expansion of Functions
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and g,; =(x2 Fg zz)“%[Zz2 ~x? —yz] i)

Adding (1), (2), and (3), we are left with

By % & 13 2 ANBES"2 2 143 3 o
asz’ayz*azz*(x ¥ +Z) [21 o Al ShY e Sh
+222 —xz—yz]

32v o*v o' %
e axz > azz—Ox +y +z) (0)

v v v _,

3
Example 11: If u=¢""* then show that 6 (1+3JC}’Z+J£2 < 2) &’
Selution: u=¢€”"
.‘.%"xyem

0t u
and , ay—-—*é-z—=xyxxzem+xem

2
or %=(x2yz+x er

63

perers —(Zx)z+1)e"’ +(x yz+x) yze”

8’ u 2.2.2
or oxdyad =(?.x)a+l+x y'z +xyz)e‘)"

x Oy Oz

3
or afay"a =(1+3x)z+3c2 : z)e""
rA

Example 12 : If u=log(x3+y3+z3—3x)z) then show that
[a ? a)z 9 A
e i L g
(x+y+2)

Solution: Given uzlog(x3 +y +2 —3xyz)



. Ou 3x2 -3z

- 3I-x3+y3+z3—3x}n

du_ 3y'-3x
0y x*+3y*+2' -3z

0 ¥
And == 3 32 3;}'
0z x’+y’'+2°-3nz

a 3 \n _3(xz+y.2+zz—xy—ﬂ-zx) .

(a+5y‘+5;]u“ (x3+y3+z3—3xyz)
st nes)
_(x+y+z)(x‘+y'+t’—xy-}¢—zx)

L ?—u— ia—i ﬁ_] From (1)
x by 0z) \&x By Oz)\x+y+z
vt 3 d 3 . 3
(J:+y+z)2 (J:+y+z)2 (x+y+z)2
'(a ] a) 9
or —t—+— Uz ————
oy %) (xeyra)
2 2 2

Example 13 : If : +2y +: =1 Prove that
a+u b'+u c“+u

(Bu]z (auT (aqu ( ou  ou au]
— | +|=—| #|—| =2 x—+y—+2z—
ox dy 0z ox "oy Oz

Where u is a function of x, y and z.

2 2 2
. X z
Solution: Given ——+ ——+—— =1
a+u b'+u c"+u

Differeniating partially w. r. t. x, we get

(1)

(1)

Differentiation and
 pansion of Functions
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2x x? Ou y? ‘@_ z? _Bu
“2"'“ (a +u) £l (b2+u ? ox (c2+u)2 ox
or 2 —( x" 2 \-@=0
a’+u (a +u) (b2+u) (c +u) Ox
N\
imilarly, = %! .?_"_=0
T | (@ (buu) (@ +.,) o
2g- = sz 2 ¥ 22 o _
¢’ +u (¢12~,+u)2 (b2+u) (c +u) 0z
3 p
i =P ..2)
T e (buu) T
in the above equation we get,
Wy B b .03
ox (az+u) P
ou 2y 3
5;_(524.:))‘1“ =)
ou 2x 1
é—z-= o x}; ....(5)
Squaring and adding above we get, '
Ox oy 0z (az+u)2 (b2+u)2 (cz-!-u)2
B RORC e
or [‘;_3:]2+(%]2+[%]2 =Pi S ...(6)
Now multiplying equations (2), (3),and (4) byx,y and zrespectively and adding we
get, .




/

from (1)

. L A
& " & Plat+u Biu Ftu
du  ou 2 2
or X—+y—+z—=—xl=—
& "y o P p
. from (6) and (7) we have,

HEGRER
—| = +|—| =2 x—+y—+z—
ox oy 0z x "oy oz

8z

Example14:If x*y’z" =¢ showthatforx =y=z ——
oy

Where z is a function of x and y.
Solution : Given x*y’z* =¢
Taking log on both sides, we get
xlogx+ ylogy+zlogz=c¢

Differentiating partially w. r. . x, we get

1 0z 1 0z
x~+logx+—logz+gx—-—=0
b4 7 Ogx gz “2

or (1+ logx)+g§(l+logz)=0

gz (1+1ogx)
or - 7
ox  (1+logz)
Simlarty, % = (#1087
& (1+logz)

Differentiating (3) partially w. r. t. x we get,

1 oz
5%, _~0'(1+logz)+;-~a;(l+logy)
dxdy (1+logz)2
i1, ey o
xdy z (1+Iogz)2 0x

1 (1+iogy){ 1+10gr]}

=—X
z (1+logz)’ | \1+logz

- (1+logx)(1 + logx)
B x(1+ logx)(l+ logx)

=—'(J:1ogex)'1
(1)

(2)

+.(3)
Puttingx =y =z

7

Differentiation and
Expansion of Functions
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SO S (- loge=1)
x(1+logx)  x(loge+logx)
_ 1
x log(ex)
a2,
= ~(xl
2%y (xlog ex)™

2
Example 15: If u= f(r), and r* =x* + y* show that%x—;‘ =f ’(r)+lf (r)
r

Solution : Given u = f(r),

%) G aate )]
ou , x or or x
é—x-_f(r)-;(From(l)) or Zra—-?.xé;——; (1)
a s
Now, ?—g—f()—ri"‘f()—"_
-
x* A
=f"(r) Tt r(r) ,-zr (From(1))

2 /2 _ 2
=fﬁ%%#ﬂ0r f]

—ﬁ—f()——+f0)y

=
Similarly, gy—= ()y +f() >
Adding above we get,

e A SRS Gt “’)

21, g-y—-—f~(r)+§f'(r) ¢ 7t =xt )



EXERCISE 1.1
o’u _ d%u
Q. 1. Ven fy———forfollowmg functions -
Oxdy  Oyox
24yl
. _ -1 + ¥
(1) wu=tan [%) (1) u= log
xy
(i) u=x’ (iv) wu=xsny+ ysinx
V) u= ay - bx i) u=x2tan'l(1}—y2tan"i(£
by ~ax x ¥y
Jy du_  ou
Q.2.If u=sin showthatx +y—=0.
{f f J e
<14
Q.3.1f u=sin™ prov ¢ that ?3"33—4 l—guwgu—
x+y ox Oy dx oy,

2 2 _ .2
Q.4.Ifu=x2tan*1[y1 v tan” [ ]pmvethat2£=x2 yz.
X y oxdy x‘+y

Ou Cu
.5.1f u=sin"! z}—t&m rove that x—+ —=0.
< ’ {x [y}p Ox yay

Q.6.1f u=cos™' Lb A prove that x@+ ya—"_—.o.
x+y ox oy

2, A2
Q.7.1f u= f(x—by)+$(x +by) prove that b2$=gy—;‘.

2 2
Q.8.If u=sin(y +ax)—(y+ax)’ prove that 6—;—‘=aza—;—‘.
Ox oy
2 (.2, .2 2,42 0%u _ 0%u
Q.9. Ifu=2(ax+by) —(x +y ) anda” + b° =], ﬁndthevalueof;:

2 2
2 b 8'u d%u o'u 2
Q. 10. If u= (x +y +z) thenprovethaté——+ay2+azz—;.
Q. 1l u=logr, where r =(Jc—a)2+(y—b)2+(z—c)2 show
O'u 0% Ou_1
.
8'u  0'u

Q.12, If u= e(xcosy ys:ny)thenprovcthata—+—2 =0,

|

az' "

that

Differentiation and
Expansion of Fumctions
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2 2
Q.13. If uzalog(x2 +y2)+btan'1(}/],prove that -a—g+a_“=0,
X 612 ayl

- 'y 1

Q.14 Ku=tan™ 2 chowthat <% = .
(1+x2+y2) Ox8y (l+x2+y2)%
Q. 15. If u=log yx* + y? + z% , show that (x2+y2+z)a—2u+22—u-+6" =1
x? oyt 8’
Q.16. If u=x", provethat =%+ L .9 _»4
yox logx ox

2 2 g2

Q.17. ¥ u=|x y z| then prove that @+@+—3—u--0
x dy &

I 1 1
Q.18 I u=(1—2ry+ yz)}é , prove that xgu-—+ ygyu—zuzuz.
X

2 2
Q.19, If u=tan"[%],pmvethat Z—T“+gy—;‘=o.
X

62u= 62u=262u
oo oudx  oxty

Q.21. If u=embyf(ax—by), prove that b?+a%=2abu
x

Q.20. If u=logx’ + y? + 2%, prove that x

2 2 2
Q. 22, Ifu=—2——12——2, prove that a—;i+6——2—u+a—;f= u 7
x“+y‘+z ox"t & oz (x2+y2+zz)
log (<2 + 12 ou, ou_
Q.23. If u-log(x +y ), show that x8x+y8y_2
ByJ (62} ox
MU Ifu= ,z) =0, show that =—1. Hence fin
Q.24. 1f u=b (,3,2) = 2)(Z 5, = Heoe o

[Q} x constant, (%—} yconsl:ant, gf Z constant,
oz ox &

Q. 25. Find the partial differential coefficient of x* y? w.r. t. x and y.

1.2 HOMOGENEOUS FUNCTION

A function f(x, y )of two independent variables x and y is said to be homogeneous, if it
can be expressed in the form,




(5= 008 + x4 a2+ 462y a7 )

Here each term in the expression has degree n. Thus f(x,y) is a homogeneous
function of degree n in variables x and y.

We can write f(x, y)as:

e R AR AR Al
f(xy) =x"f(%J

Thus every homogeneous function of independent variables x and y can be expressed as

(%)

1.3 EULER'S THEOREM CN HOMOGENEOUS FUNCTIONS.
If f(x, y) be a homogeneous function of x and y of degree n, then,

L
Lty Py nf
Proof: As f(x, y)be ahomogeneous functions of degreen, then it can be written s
—et el Y
1,9)=x"1(%,) (1)

Differentiating (1) partially w. . t. x.

1))

X

szn-lf[%]_xﬂ—Zf(%) (2)

2-0101):
Z-c5()

Now, multiplying (2) and (3) respectively by x and y we get,

N T
or x-gf;+y%='nx"f(%J

Similarly,

Differentiation and
Expansion of Functions
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or xg:+y?'f—=n-f from (1)

x "
Remark : If f(x,x,...x, ) beahomogeneous function of degree n, of independent variables
Xy,X;...x, then

o . o, o _

Xj—+x;—+.x,—=nf
Yo, lox, "o

SOLVED EXAMPLES
Example 1. : Verify Euler's Theorem for the function
S(x,y)=ax® +2hxy + by’
Solution : Here, f(x, y) =ax” + 2hxy + by”, is a homogeneous function of degree 2,

So, PN Y

o "oy
Now,  f(x,y)=ax® +2hey + by* ..(1)
Differentiating partially w. 1. t. X,
of
“~=2ax+2h (2
o 2ty 2)
- of _
Similarly, -~ =2hx + 2by ..(3)
dy
Multiplying (2) and (3) by x and y respectively and adding we get,
of I _or 2 2
x§+y5—2[ax + hxy + hxy + by ]

or xg—'xf—+yg-=2[ax2 +2hxy+by2]

or x%+y%=2f from (1)

Example2. : Ifu=[%)+ (%)+[yy}thenprove that xgx—u+ ygyu—+zg“—z=0

Solution ; Here, u is a homogeneous fimction in three variables of degree 1-1=0. So, from

Euler's Theorem,
x@+y@+ z?—tf=0~u=0
ox oy oz



Example3. : Ifu=sin J_ J— show by Euler's Theorem x@+ y@_o
Vr+fy x oy

§+JJ:] S (let)

~. f is a homogeneous function in two variables of degree % -% =0.

Solution : Here, siny = [

So, from Euler's Theorem, we have,

of o
=+ y==0-f=0
Ry f
or xi(sinu)+ yi(sinu)=0 " f =sinu
Ox ay
ou ou
or xcosu—+ ycosu— =0
Ox dy
or x%+yg;—=0 wcosu =0

3,3
Example 4, : Ifu =tan™! ¥ V| show that x§3+y@=sin2u
x+y ox oy
4y

Solution : Here, 1 = tan'{
x+y

J = f(let)is ahomogeneous functioninxandy ~ of

degree3-1=2
So, from Euler's Theorem, we have,

ALY
8x+y6y =2f

Now xé;(tanu)+y§y(tanu)=2tanu

xsec ua + ysec u@-—2tanu
0 o

x
or x@+y@—2tanucos u
ox "oy
or Jc@+y£9-uf~-2tal:mcos2 u
ox Oy
du Ou
or Xx—+ y—=sin2u
ox
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' B . 3 3 . i
Example5. ; Ifu= tan'l[f—j——y-—} then prove that
X+y

2 2 2
ng—;+ E—u-+y?'6—;‘=(2cosu—1)sin2u
ax Oxdy dy
Solution : As in example (4)
Ou

xé;+y%=sin2u 1)

Differentiating above partially w. r. t. x we get

Xx—+ y——=20052ug£ ..(2)

x—-—+—-+y—-——=20082u-g—u- ...{3)

Multitplying (2) and (3) respectively by x and y, and adding we get,
0’u 0%u  ,0%u
2 2
X'+ 2y y—
ox? oy oy

,0%u 0*u 8%
or X+ 2yy——+
ox’ Oxdy

=(2oos2u-—1)g:- (x—-*+ y—

Example 6. : If u, be a homogeneous function of degree n, show that :
0*u

) d*u Ou
v E (n-1NE
(i) xaxz + yaxay (n )8x

2 2 2
(iid) x28 u+y8 u+x23 u:n(n-—l)u

o 2 axay ayZ
Solation :
(1) Sinceuw is a homogeneous function of degree # in variable x and y then by
Euler's theorem,
ou Ou
—+ y—=nu 1
=5 (1)

Differentiating (1) partially w. r. t. x, we get-

y 5;? =(2cos2u-1)sin2u  (from example 4)



or x—+y—=(n-1)— {2

_._+_2 —l=p—
Oxdy % O
u Ou
or x—+y—==(n-1) — ..(3)
oyox " ay? ( )ay
(1) Multiplying (2) by x and (3) by y, and adding we get,
2 2 2
x26 u+2xy 0'u .,_yZ‘Zy;‘ =(n—])[x%+y%) From (1)

ax? 7 oxdy
(y u ou
E 7. : Mfu=f| = | showthatx —+y— =0
xample u f[x} ow x6x+y6y

Solution : Since « is a homogenecus function in x and y of degree 1- 1 = 0. Se, by
Euler's theorem, we get,

Adding (1) and (2), we get,

x@+y§u——0
.o ax

Example 8. : Ifu=Ax® y» + 4,x% yP . n terms. Where o, +p, =a, +B, =...=n
p 1 2 1 2

show that x§+ y% = nu

oy
Solution : Given u=Ax™ yPi +A2x°’yﬁ’ ...... (1)

Differentiating (1) partially with respect to x, we get,

Differentiation and
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@=Ala1x“"‘ Pr Ay x ™y (2
Ox
Muitiplying above by x we get,
x S-E=Alalx“‘ YP o Ay x iy ..(3)
X

Similarly, differentiating (1) partially w. r. t. y, we get

ou - -
D AP A

Multiplying above by y we get,
au a. a
}"a;=A1ﬁ11 PP+ Aoty ~-(4)

On adding (3) and (4) we get,

X %‘1’}) %';A}(al +B2)xal yBl +A2(a2 +B2)xu’yﬂ‘ +...

Ou au— o, B a; B
or x—x~+y5—n[Alx PO+ Ayx y2+...]

or x-@+y-a-l—‘=nu (from (1) @) +B, +a, +B, =...=...=n)
Ox oy

Example 9. : Verify Euler's Theorem for the following functions :
(i) S(x,3,2) =axy + byz + ez
(i) f(x,y):x3 +3x2y+3pt+ )3
@) f(xy)=%’ log[lj
x
(iv) f(x,y,z)-—-Z*uczjfrz+4Jtyzz-|~5y4
Solution :(i) Given f(x,y.z)=axy+byz+ ez (1)

Differentiating (1) partially with respect to x, we get,

—a;=ay+cz -(2)
Similarly, % =ax + bz .(3)
or g—=by+cx ...(4)
Oz

Multiplying (2), (3) and (4) by x, y, z respectively and adding, we get



xg‘i+y—a£+zg=axy+czx+axy+byz+byz+czx
Ox oy 0z
or xgxf—+ ay ng 2(axy + byz + exx) from (1)
or x= f Bf af =2f from (1)
6x ay az

(i) Given f(x,y)=x" +3x"y +3xp” + y*
Differentiating (1) partially with respect to x, we get,

of

ox

of

Similarly,

Now, multiplying (2) and (3) by x, y respectively and adding, we get

ng-+y f—3x2y+6xy+3y2+3x2y+6xy+3y2
ox oy

o O (3 a2 2, .3
or xa-x+y5y-—3 X7 +3x"y+ 3y +y)

or xg+yg=3f {from (1)}

(i) Given f(x,y)=x’ Iog[fJ

Differentiating (1) partially with respect to x, we get,

g=3x210g —}f-]+x3 d x[——y]=3x2
ox x ¥ x?

=3x% 1o 2
ax g[ J

of
X

Similarly, é xa-i;—x[éj
¥ _x .03
7 3)

Now, multiplying (2) and (3) respectively by x, and y and adding, we get

xg—£+ya£ =3x log[ J 22+

(1)

=3x% + 6xy + 32 .2

5y—=3x2+6xy+3y2 (3)

. (2)

D)

Differentiation and

Expansion of Functions



Business Mathematics

or xl %+y% =5:[x3 log[{—D
x o +y of
ox

or =3f from (1)
"
(iv) Given f(x,y,z)=3x2yz+4xy22+5y4 | (1)
Differentiating (1) partially with respect to x, we get,
%=6m+4y22 .2
- 4.2 3
Similarly, 5 =3x"z+8xyz+20y ...(3)
and Y ity an? (4)
0z
Now, multiplying (2), (3) and (4) by x, y and z respectively and adding, we get
X -61+ ¥ QJ:+ z aj—=6x?‘yz+ 4chzz+i’m2yz+8xyzz+20y4
Ox dy 0z
+3x2yz+ 4xy22
of o _
or 6x+y§+z 4(3x yZ + 4xy z+5y)
=4f from (1)
or x = f af af =4f
6x ay é‘z

3,3
Example 10.: Ifu = tan!| 222 | show that x@u_ + y@ =sin2u
x+y ox oy

3.3
Solution : Given u =tan“l(x P4 J
X+ Y

x4y (D)

X+ y

. tanu =

Differentiating above partially w. r.t.x we get
2 O _ 3x2(x+y) (x +y)l

31 (x+y)
seczu?‘—u—=3xa +3x? y—J: —y3
ox (x+y)

Self-Instructional Materiol



, Ou 23} +3x%y— 3

X e
or sec uax (x+y)2 (2)
2 33
Similarly, sec? uot = 2Y *2y_ X )
oy (x+y)

Multitplying (2) and (3) respectively by x and y, and adding we get,

2 ou du (2x3 +3x2y- )’3) (2}’3 +3xy? —x3)
sec u[x——--y-—]zx 5 +y ;
ox " oy (x+y) (x+y)

or seczu[x?ﬁJ,y_a_“}:Zﬁ+3x3y—y3x+_2y24+3xy3—x3y
Ox By (x+y)
:214 +2y4+2x3y+2xy3
(x+_y)2
2[4 )+ )]
(x+ y)2
2(x+y)(x3 +y3) x4yt
) (x+)

=2tanu (from (1))

xgxz+ yéu— =2tanuxcos® u =2sinucosu

ou  Ou .
or x—+ y—=2sinu
ox "oy
Example 11.: If u = cos™ k2 +cot"'(l} prove that x@+y%=0
y x ox oy
Solution : We have u=cos‘1[f~]+cot'l[ZJ (1)
y X
Differentiating above partially w. r. t. x we get
%——_l_xl.}l__l_x[_L]
ox h'f); y 1+}Z, x?
2
N N _i__,{_ll
0x  fyp?-xt ¥ xt 4yt h
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=- o 2)

Similary %:_ -2/ x[ iz] 1+}7 (IJ

e

N . ®
ay y yz—-xz X2+y2 o

Multiplying equau'ons (2) and (3) respectively by x and y and adding we get -

x—+y 4 * ¥
ox ay Z_Il x +y l_xl o4y
x—+ y@ =0
ox oy
Example 12.;: If u=L, show that x@+ y@ =u
(x+y) ox
Solution : Given u=—22 (1)
(x+y)

Differentiating above partially w. r. t. x we get
u y(x+y) Ixxp y?
ox (x+y) (x+y)
2

D

Ox (x+y)2

x(x+y) xy

¥ (x+ y)
@ ~ x? +iy-¥y X
& (x+ y)2 ()c+y)2
o2

& (x+ y)2
Adding (2) and (3) we get -

2

Similarly, —

2

-.(3)



2 2
xéy~+ya—u= 4 >+ xyz
ox oy (x+y) (x+y)
=xy(x+}’)
(x+y)2
d =u
(x+y)
Ou Ou
Lo X—+y—=u
ox "oy
xy
(x+y)
Ou

x—+y—qu-—lxu-u
ox

Remark: Since u=

Example 13.; Ifu=f[%)]+y¢[%} show that

0 522+ 528 = oY)

2 2 2
iy x2 o’u | 2% _,

u
ot ety o

Solution : Given u= f (%J Ty 4{%]

Differentiating (1) partially w. r. t. x, we get
VS SLAYAS
« G

Differentiating (1) partially w. r. t. y, we get

()& () ()Y
R AR A=A

Adding (2) and (3), we get,
xg:— + y% = yd{%]

[from (1)]

is homogeneous of degree 2 ~1 -1 =0, therefore,

(1)

..2)

..(3)

(8
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This proves result (i)
Now, differentiating (4) partially w. r. t. x we get

Differentiating (4) partially w. . t. y, we get
xg;%+ 2;7"+2u— = ¢ (}/]+y¢(}/J(}/)
or B’% +y = 6y yg—ytb (y/] y/+¢ (J/J -(6)

Adding (5) and (6) we have,
Pu . 0w % . du [
x2 yve_ 2gr Gw R Y J
+ + +x + =
o oy P P yé / )
From equation (4) and (7) we get,
2 2 2
E 0 u+2xy 0 u 26
ax* axay 6y2
This proves (ii)

Example 14.; If u=x”’f(%]+x”g (%} prove that

8'u . 0u
et 2y——+ y —+ mau=(m+n-1 [x—+ J
' oy T oy , ( ) "y
Soluﬁon:tLe't‘ vzjr”f[%)and w=x"g [%)
Then u=v+w (1)

As v=x"f [ % ) is a homogeneous function of x and y of degree m, therefore, by

2 2 2
Euler’s theorem we have x26 ;‘+21ya u+y26 u—m(m—l)v (2)
ox oxdy oy’ .
(see example 6)

Also w=x"g (J/ J is a homogeneous function of x and y of degree o, so, we bhave

8%u 62u
2 —4 - ——..—..n n-1)w (3)
e nyﬁxay &’ (»-1)
(see solved example 6)
Adding (2) and (3) we have,



x2i+(v+w)+2xy 6’ (v+ w)+yzi(v+w)
o’ xdy o

=m(m-1)v+a(n-1)w ...(4)
Since v and w are homogeneous function ofx and y of degree m and n respectively, then

by Euler's theorem :
Ou Ou Ow ow
X—+Y—+X—+ YX— = mv + nw
ox "oy Ox dy
or xg:—+y@=mv+nw from(l) ...(5)
Again m(m-l)v+n(n—l)w

=m2v~—mv+n2w—nw

=(m2v + nzw) ~(mv+nw)

=m(m +JI)V+ n(m "HH)W'—MH(V +w)—-(mv + HW)

=(m+n-1) (mv+nw)- mnu frem (1)
Substituting these values in (4) we get

, 0% 3y ,0%
'+ 2y—+ y' — =(m+n=1)(mv+ ) —mnu
oxt T dxdy
&*u 0%u 8%u
or x4 2y +y?— + mnu=(m+n-1)(mv+ nv)
o’ xdy T gyt

=(m+n—1) [x%+ y%] from (5)

Xy

Solution : Given u = log{ + ] - [3/ ] (1)

Differentiating (1) partially w. r. t. x
e O )
o x4+t xyt I_fxl x’

au_xyy

o xy(x +y) J_

2 2
Example 15.: If “=1ﬂg[x Y ]+sin‘1 [%} prove thatx%+yg;-=0
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o v(x"-5") y

& xy(x?+ }’2) xyx? - y?

RL x "yz) y @
o x24 y2 \/xzc_})?

Differentiating (1) partially w. r. t. y, we have,
(2y(xy) (x +y )) 1 1

ax x + y 1— yy [ J

i

93 "’(}”‘x) NN 1

Ox (x +y) 2 ¥
o (P0)

ax Iyix +y) J—

u  yt-x? . h%

or

or —= .3

Vo T 3y SR €)
Adding (2) and (3) we get,

ou _ xt - ) y? _x? y

x-—~+y =

Ox xt+p? 112_ 7 xt4y? sz-yz

Bu Ou _ rt }’ ¥ -5
or —+ y— + +

> oy x? + pt sz_yz et fz_yz

ou  Ou

x—+y—=0

dx oy

EXERCISE 3.1
Q. 1.: Verify Euler's theorem for the following functions.

R I )
o )5

(iii) z=x" sin(y/x) (iv) u= sin~! [_{] + m‘l(zJ
Y




Q2.:If u=sin'l[£]+ tan'l[—szrovethat x@+ y@mo
y x ox "oy

Q. 3.: If zis a homogeneous function of x and y of degree n, then show that
62 62 2
x’ — 2 6 n(n —I) z.
ox 8xay
Ou

Q4:Hu=x’+y’+22+32 showthatx-a£+ y@+z—=3u.
ox oy 0Oz

Q.5.:If u-—-si.n'l[ Ty ]showthat xgu-+y§¥*=ltanu.

+
Vr+4y x oy 2

2 2z
Q.6.: If u= tan"["—”’—J then show that xg—“+ y% = %sinZu

Xty x
y 8%u 232
Tor I u=xf]= |+ ovethatx—+ — =0,
Q ’U "( J‘” e e
Ou du
.8.: If u=f]Z| showthat x4+ y % =0,
Q u f(x} ow xax yay
' - ou ou 1
9.0 If u=cos | ¥t then show that x — 4 y— + —cotu =0,
Q u =C0$ [ //;+\/; en show tha x6x+y6y+zcou

a3+ ou  Ou
. = x +y -
Q.10.:If u=sec [ Kﬂ’} provethatxaIer =2cotu.

14 TOTAL DIFFERENTIAL COEFFICIENT

Let u:f(x.y) (D

be a function of two variables such that x =¢(¢) and y=wy (s}, i. e. x and y are
functions of ¢. If we substitute these values of x and y in (1) we get

u= f{$(1),y (t)) which may be treated as function of the single variable ¢,

then ordinary derivative %‘f , is called total coefficient of u with respect to £.
t

Sometimes, we find it very difficult to express uin term of t alone by  eliminating x
and y. So we are to find % without actually substituting the values of xandyin

terms of tinu = £ (x, )

Let &x, 8y and 6u be the small increments in x, y and u respectively corresponding to
sinall increment 1n £,

Lex+dr=¢(t+8¢) or y+8y=y(t+8s) and u+u=f(x+8x,y+8y)

Differentiation and
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Now, from definition

d u+du)-u
dl: hm&t—)ﬂ( 81)
lim,, (x+8x, y+;y)—f(x,y)

Adding and subtracting f(x + 8, y ) numerator,
f(x+8x, y+8y) f(x +8x, y) fx+8x-y)- f(x )

= im0 5¢ 5t
- limg,, f(x+8x, y+8382t)~f(x+8x,y)
Hlimg, o TEY —;’t)_f (.7) A1)
_1im [f(x+8x,y+8y)—f(x+&x,y).5_y
= hmg, 5 51
: dx-y)-f(x,
+llm5¢_.o f(x+ ﬁyx) f(x y)%]

ox _dx

. 9 :
hmsr—»o—}i=g2 and lims, 4 — o dt

ot dt
Also 6t >0, 8x >0 and 6y >0

Hm&_m[f(x+ﬁx, y+8§3-f(x+&x,y)'

limsy-po[f(x+8x y+8§3 f(x+8xy) aSy(x+axy)

By definition (as x + &x remains unchanged while y changes ﬁ'om ytoy+8y,i.e.
x + Ox is treated as constant for this limit)

1]_n:ls}%o[f(x+8x y+8§3 S(x+8x, y)

as 8x—> 0, and u= f(x,)
f(x+8x, y +8y)— f(x+8x,3)

f(x+8x )--——

Similarly, h'max_,o{

ox
=hm&%[f(x+&,§3—f(x,y)
_0/(xy) _ou D Fx
_—'—ax_"ax "f( ry)



from (1) we have,
du Bude ou dx

& 3ydr6x dt

or éﬁ_@..g % .d_)_’ '(2)

d ox 4 o dt

In general, if u = f(x,,x,,...,%, ) and x,x,,...,x, are function of ¢, ther —
du au dxi 3u dx?_ é_dxn

&t ox, dt dx, dt ox, df

Remark : [fu= f (x, y) is a function of x and y, and ¢ is a function of x, then from the result
(2) above, the total differential coefficient of fwith respect to x, is given by

o oS b du _ou_ Ou dy 3)
dx ox &y dx

In general if u = f(x,,x3,....x, ) be function of x,x,,...,x, and x,,x;,...,x, are
function of x, alone, the the total differential coefficient of » with respect to x; , is
given by -

o _of  ox dxy Of by Y dxy
dx Ox; Ox, dx, 0Ox; dx, ox, dx
du_Ou  Ou dxy Ou dxy ou dx,

or L T3y
dx ax a‘l dxl aX3 dxl axu dxl

1.4.1 First Differential Coefficient of an Implicit Function :

Let f(x,y)=c, where c asa constant, and y is a function of , then from the result (3),
we have,

4(9-2 (1)

0 X & S &
ox dx Oy dx
YL Yy
ox 0Oy &

Ay ol o o

Cd offy &/ oy

1.4.2 Second Differential Coefficient of an Implicit Function :
From %:-%f- -‘% (D)

Differentiation and
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=& E)

A Now,

2
A (8

Pl R

Fa

D[

+

2|
&ie

Similarly,

il

\T/
D[

|

QJM

-
>
BI&

e &8 &8 &8 58
g

I

[

+

~

!

&
Gy
R

=5q9-pr ..(5)

Substituting these values in (3) we get

q(qr—sp)_p_ sq—pt
d’y q q
2

dx q2



or d'y __q'r—gp-psg+p't

dxz - q3
or d*y __qzr—2pqs+p2t
il - 3
q
SOLVED EXAMPLES

Example 1. :If u =x2y?, where x* +xy+ y* =1, find %

Solution : Given u=x2y?

Welmowthat-d—u—-ag+gu—-éy—
ox By dx
Now, from (1), u =2xy?
Ox
And, a%-ﬂxzy
Also, axy+y? =1
Differentiating above w. 1. t. X we get,
dy dy
x+x—+ y+2y-—==0
™
or b_ Ty
dx  x+2y

Now from equations (3), (4) and (5), equation (2) becomes —
du 2 2 2x + ¥y
dx 2y ){ x+2 y]

or @=nyzx(x+2y)—2xzy(?.t+ y)
dx (x+2y)
du 2yt +dxy’ -4x’y-24tpt
- (x+2y)

. @ _ 4}0,(},2 _xz)

dx (x+2y)

or

& |

Example 2.:If u=+x%+y?, and x? + y* + 3axy =54°, ﬁnd%xli wherex =a,y=a.

Solution : Given u= \}xz + y2

(5
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du x Ou

e X 2}’ (2)
2ty %y

Nowgiven  x* + % +3axy = Sa°

Differentiating above w. 1. t. X we get,

dy dy
2X+2y—=+3ay+3ax=—=0
+ ydx ay axdx

or dy _ b+l

dr 2y+3ax

. (3)

— — 0 —

Putting the values ofgxu-,gyu— and % from equation (1), (2) and (3) respectively in  (4),

we get —

f{!f: X . y /_2x+3ayJ
ey \/r2+y2L 2y +3a
When x=4, and y=a
du ¢ 4 [ 20434
dr {P2¢+3a’J

+
w2 a2

Example 3. :Find% if u=sin{x’ +y3), where 2°x® + b%y% =&,
Solation : Given u =sin{x’ + y3)

" Zu—;=cos(x3 + y3)x3x2 and gyf-m::os(x3 +y3):x<3y2

Wealsohave, a°x’+ b3y3 =¢

Differentiating above w. I. t. x we get
302 4332 P =g
dx

s EARY LD

ou ou
Putting the values of —,— and —— in (1), we get -
g 'y (1), we ge




% =3xzcos(x3 + y3)+3y2ms(x3 +y3) {-— ZE;Z]

du _ 3. o[ a’xyt
3—3005(1 +y) X —_[)T’T

du 3 3 [b3x? —a'x?
E—:;COS(X +y) b—3

B3 cos(2+ ) (5 -2")

du .03 \X (3 3
—3(b —a )b—soos(x +y )
Example 4. :Find—E if x¥+y*

Solution : Let f(x,y)=x" + 5 : ..(D)
Then f (x, y) =¢ which is an implicit function in x and y,

L dr_ dfles

dx  of oy

Diffetentiating (1) partially w. r. t. x. we get,

o
ox
Differentiating (1) partially w. r. t. y. we get,

af y x—1
—=x"logy+xy
oy

.(2)
=y + y* logy
Putting these values in (2), we get —

dy_ | »7+y logy
x” log y + xy*!

dx

Example 5. : Find%xy— If f(x,y)=0,and ¢(y,z)=0then show that

o o % _of 0%
oy &z ox Ox Oy
Solution: - f(x,y)=0 .. —z—=—% (D)
_o . F_ 000y
And 0(n2)=0: =20 )
Multiplying (1) and (2) we get,
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dy dz_ofjox 04/dy
& offoy oejer

or Y00 & & o 0%

Example 6. : F'md{:—;£ If u=x*-y +sinyz, y=e* and z=logn

Solution : As u is a function of x, y and z and y and z are functions of x, we have,
du_Ou dx Ou ajz+6u dz )

dx  ox dx 6y dr 0z dx
Now, u=x2 -y +sinyz .(2)

Differentiating (2) partially w.r. t. x

& o
ax

Simijlarly, Ou =-2y+2cosyz and ou = ycos yz
dy oz

From y=¢€ and z=logx

dy _ o dz 1

dx dc x
Substituting these values in equation (1)we get,

du 1

— =2 (-2y+ zcos yz)e* + ycos yz—

== 2x (“2y+ 2008 yz) " + yoos yz—
or %:%[2):2 +xe* (zc0s yz -2y )+ yoosyz]

Example 7. : If u=f{(x—z), (z—x),(x~ )}, then prove thatgf+g;+? =0,

z
Solution : Given u= f {(x—z), (z—x),(x— y)}
Let X=y-z, Y=z-x, and Z=x-Y) (1)

Then wu= (x,y,z)
_6u ou 0X auaY ou 92 @)

— — —— ——

6X Ou oY ou dZ
o(3)

ou
X oy of & oZ dy
X ou oY ou dZ
(@)




Differentiation and

6}’ aY 0 oY : Expansion of Functions
— — =0, = 1
o b oy Oz
Ox oy 0z
Putting these values n equation (2) (3), and (4) we get,'
ax aX( ) ( )= aY az
au
And N+ 0)=—24 2
(- ) () 2 (0) -2+
On adding above we get,

Ou Ou Ou_ on o o op o o

&x oy o6z Y OZ oX Z X &Y
0u ©Ou Ou
—+—+—=0
&x oy Oz

Example8.: If u=x-y’+sinyz, y=¢€, z=logx, ﬁnd%

Solution : Given u=x"—y* +sinyz, y=¢", z=logx
o oy ol

L — = (D)

de Ox 0y Ox 0z Ox

Now, Qu__ =2x
Ox
@:—2y+2msyz, @ze"
oy Ox
o _ ycos yz,and o _1
0z ¥a ox x

Putting these values in equation (1), we get,
é‘—-~.’2Jc+(—2 + zcos )ex+ cos ><l
I Y Yz ycos yz x
du 2x +(2c0s yz-2y)xe* + ycosyz

or —=

dr X
Example9.: If u=f x242yz, y? +2x, zz+xy), prove that

(7= 2 () 2 () 2

Solution : Given u= f(x +2yz, y + 2z, z° +xy)

Seif-Instructiona! Meterial
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Let X =x?+2yz, Y=y%+2x, Z=zz+2xy, (1)

Ou 0Ou 0X Ou 6Y Oou 0Z
Now, —_————t——t—— .(2)
ox oX ox oY ox 62
oY
+ ..(3
3 &)

K 2.

...(4)

°’|~: ‘93|
+
N|@ N|®

—=2, — =2z, —=12

Ox oy 0z

a_Y 2 6_Y__2y, -a—Y-.—_zx Y .(5)
Ox oy Oz

62 =0, -@Z:O, @=0

ax Oy oz

Multiplying equation (2), (3) and (4) by x*+2jyz,y* +2z, and z?+2xy
respectively and putting the values from equation (5) to the equation (2), (3) and (4)
and adding, we get,

(r-=) oo (3 yz)gy_ﬂ ey W)%:.{%(up%(u} %(o)}(yz_ z)
A2 @)+ 2 2)+ 2 O} (- )
@)+ 22+ 2O ()
_% {Zx(yz— zx) + (2z)(y2— zx) +2y(z2—xy)}
+§u};{2z(y2— zx) +2y(x*- yz) +2x (zz—xy)}
Lou
oz
=§%{k Pl + 228 -2t 222t yz}-l- %{2: yi-21%
12 p—2p s + 282 2ty
=%(0) + -g;-(o) + g%(o)

=0

O RN



Example10.: If z=f(x,y),x=¢"+e™, y=e™ -, then show that

Solution : Given z= f(x,y),x=¢"+¢€, y=e*-¢" ...(1)
We have,
%=§—z—é+%§y— (2) from (1)
Ou 0Ox Ou Oy Ou
E_EE Ey
év Ox ov Oy ov
and §£=QZ_@+§£_@ ..(4)
ox Ou ox Ov ox
0z 0z ou 0Oz ov
—=—— = ..(5)
Gy oOudy v Oy
We also have
%:eu’ -gy—u-=—e'—u
...(6)
Qf—_...e—v, @—_ev
ov ov
Subtracting eqation (3) from eqation (2) we have,
%-iﬁ?ﬁ{@-?ﬁ}ﬁi.[@lil} )
du dv ox\du ov, oy \ou ov
From equation (4), (5), (6) and (7), we have
o _& %, e“+e")+gz—-(—e‘“+e")
ou ov Ox oy
gzl;-gvz— = gzx—(x)—%(y) From equation (1)
0z 0z Oz Oz
or —_————=x——y—

Example 11.: If z=f(x,y), when x=uv, and y= 2 then show that
v

oz oz v: oz oz 1( &z 62]
—=v:———— and —=—|u—+v——
o  ou 2u v ox uv\ ou Ov

Solution : Given z= f(x,y), when x=wuv, and y =X
v

Differentiation and
Expansion of Functions
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We have %—%Q'ha—z@ ...(1) and _azzggu_+gigv_ .{2)
ox Ou Ox Ov Ox dy Oudy ov oy
Now,
X =uv and y=—
A4
&_, _1
" ou ou v
Ox Ou
and —=u or —=v
v oy
2
or ou_1 oy _u v
ox v v v2 ay u
v 1
or — ==
ox u
Putting these values in equation (1) and (2), we get,
0z 10z 1é& 0z & v
—=-—4+—-—  and —=y————
& vou udv dy Ou u ov
oz 1( oz 62] o 0z V&
—=—|u—+v— d —=V———
Ox uvl Ou Ov dy Ou u v
EXERCISE 4.1
Q.1.: Find% if ax? +2hxy+by? =1  (Use partial derivatives.)
1, .3 du
Q.2.: If u=xlogxy where x” +y +3zy=lﬁnd(—1x--0
2 2 2 du
Q.3.: If u=x“y where x“+xy+ y° =1 find =
Q.4.: Find % If u=sin x2+y2) where a’x? +b%y? =¢?
Q.5.: If u=2(ax+by)’ - (x* + %) and a’+b” =1, find the value of ;.;.u@_g.
1.5 CHANGE OF VARIABLES
Ifu= f(x, y)bc a function of x and y and x and y are functions of two variables
4, 4, Iie
x=¢(1,0,), and  y=y(1,5,)
Self-Insirucsional Material Then we have,
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e L L AL & (t, constant ) (1)

ou_ou du ou dy
—_— —_—— ! tant 2
o, ox o, By o, (4 constant) - ..(2)

Incaseif x=¢(f,5,), and y=y(1,f,) can be easily expressed as

t=fi(x,y) and # = fo(x,y) then we have,
Gu_du 0t ou 0t
ax a:l ox at2 Ox

g0 S B dn

6y o, oy 6!2 dy
SOLVED EXAMPLES

2 2
Example1.: If x=rcosd, y=rsin6, prove that [QJ +[_8_r} =1
x dy

Solution : If x =rcosB, y=rsinb,
soxlay? =yt (1)
On differentiating (1) partially w. r. t, x, we have,

2x = 2,.@'_
&
or x
oLl {2
or poe (2)
Similart oy 3)
Y, oo r
Squaring and adding (2) and (3) we have,
[arj" arY x? y?
Ox %)% rt
2, .2
S L®, from (1)
r

SelfInstructional Matgrial
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Example2.: If
olr 8% 1 [6r]2 orY
— —— = — —_— | 4| —
mx? oyt r|\x dy

Solution : Given r =rcos, y=rsind and r’=x>+y°

On differentiating (1) partially w. r. t. x, we have,

»¥ o Similety, F-=2
ox r
or x
or —==
oax r
2?r Ixr——x 52y Ixr———y
) 2 and 7 = 2
ox r oy r
r—;x,t azr r-—%xy
! ot P =T
atr _ r? —x? 2 atr - y?
PR @ T
Adding (2) and (3) we get,
8%  0%r B rP-x?  rtey?
axz +6y2 - r3 + r3
air o*r _r2 —xrert—yt 2t
o 6?+8y2 B r r
or or o _rt 1
axz ayz r3 r
We also have,

~ | =

' F[ﬁr\z [&\2
or |+ = |=
ox) \dy)

r=rcos8, y=rsin® and r’=x?+ y? provethat

(1)

..(3)

from (1)

.(4)



1oy (ar) | 1
o :{[5;] ‘3] } -0

From (4) and (5) we have the proof.

Example3.: If x=rcosb, y=rsin® showthat —=—; -—— =r— and find the
ox or ro0 Ox
2 2
value of 6—?—+Q—?

ox

Solution : Given x =rcosf, y=rsin0 then we have

r?=x? 4yt () o=t 2 (2
x
From equation (1), we have,
o _x_reosd (- x=rcos6)
ox r r '
or o =cosf
ox

Further x = rcos®
Differentiating above partially w. r. t. r, we have

?—x—:cose
or
From equation (3) and (4) we have,
o _ox
& or
Again,
x = rcosf and B=tem"z
e
SRl
* ¥y
1+(/xj
28 __x [-y 2]
dx x4y’ x
or rﬁz-sine
ox

L

..(3)

(4

Differentiation and
Expansion of Functions
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.. from the above equation we have,

1ox_ 28
r 00 ox
Futher o0 —-_ 7
Px x2+y2
5% 0x2+y2) 2xy
7 )
ox (x2+y2
80 0 1 1
—2 Ly 2l Q)
Ox (x2+y2 dy 1+y/2 X
X
626_ 0x2+y2)—2xy
ayl (_"524‘},22
2
w P
y (x +y)
Adding (1) and (2), we have,
% 8% __ 2y 2y
2 2 2 2
dx° 0Oy (x2+y2) (x2+y2)
2 2
(0% 0%
6x2 By’

Exampled4.: If x=rcosd, y=rsinf and z= f(x,y) prove that
&z 0z 1 oz .
—=—c0 gind

r? (r" CO5 nﬁ)
P

Solution : Here, z is a function of x and y where as x and y are functions of 7 and 0.
. Gz _0zér Oz 0B M

and =-n(n-1)r""sn(n-2)6

6z _0z or 0z 88 Q)



We also have

- e 2_ .2, .2 -l Y
x=rcosB, y=rsin® r°=x"+y* and O=tan A

" gxi—cose g=s;'u:19, @:-—sme and a_B__cose

ox r dy r
0z _ 9_6_{_1 9@ ..(3) da_z.z 9_@,{ lcoE)-éiz- (9)
or r 00 oy or r o0
We have,
%= Oa—z+lc09@
By or r

Putting z = " cosn0 io above, we get,

% r’ cosnB) = sineg;(r" cosne) +%cos@%(r” cosne)

— o o n-1 1 d n
fsmﬁa(nr cosn0)+;0059%(r cosnG)
—nr"_l(cosnB'sine—sinne—cosne)

’ % r”cosn9)=nr"_1[sm(9—n0)] ..(5)
Now, 626}’ (r cosne) n——[ " sin(0 - nO)] [ (r cosnﬁ)}
—nl:cose (" sin(1-n )9) sind a("'sm(l n)B)]from(S)

Substituting »" " sin(1-» )@ for z in (3)

=n[cos9(n—1) r? sin(l—n)9—@-r"'l(l—n)cos(l-n)9}
r
%- r cosn9) =n(n-1) r"‘z[—cosesin(n—l )8 +sinBcos(n—1 )9]

X

2

5%; r cosnB) —n(n 1) r’ 2[5111(" 1)8c0s0 - cos(n~ l)sme]
_,,(,, 1) - *[sin{n—1)8 ~6]

aiay r cosnﬁ)-n(n 1) r* 2[sm(n 1)9] Proved !

Differentiation and
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ExampleS.: If

Solution : Wehave,

u=f(x,y), and x =rcosd, y=rsinG prove that

0*u 0*udz 0'u
b=t

a’ oylor o

x=rcosB, y=rsind

eyt L@, 0=tV .03)
O 2 100 _ oo @), F-2_rm9 g6 (5
ox r r oy r
g_qz 1 2[_V2 p 69 1 x
ax 1+(%) X ( x +y
90y @_rcosﬁ
o x4+ y? &
80 _ rsind @_rcosﬁ
ax r2 ay r?'
66 sin@ d9 cosH
—-—— -..(6), —=—
o r oy r
We know that,
ou_ou or Ou 00
Ox oOr &x 08 Ox
Ou ?ﬁ(—smej
o ar 0
ou oOu du 00
o o—=—cosh+ —-—
ox Or a0 dx
3, 6 3,
o ) _ o ) sindd(x) ®)
ox ar r 00
: ou
Replacing u by ™ in the above,
-0t 2
Coax? Ox\ox or\ox) r o0\
0'u _ 90 [0 o Sin8 _%‘L‘Z[ 009_5@19.@]
ax? or\ or r 09 r 00\ or r o9

2

Using polar equivalent of gxg in (8)

2
B%+a——co 6

d“u sin@ 0 (10w || sinb|
=cos0 cose———-—--— ——-=
or: r Orlrod r or 0bér

(1)

-7



1o Smgé"_]
rob 00
2 ] 2
“a—";=0089 COSOQ'"E—SUIB lﬂ_L@
ox or’ r 86or r* 09
. 2 2
S0 0% o500 _ L gL Hongp
r or o0or r 08 0o
B'u_ 240w 2sinboos® 07w sin’® 0’ sin’6 du
ox? or? r o0 r* 502 r or
2co0s0sinG Ou
e .9
T 9)
Similarly,
6_“’11_ = cos? eazu _2sinBcosh d*u N cos’ 0 0%u N cos’ 0 Bu
2 ar’ r o0 2 o’ r or
2cos0sinf Ou
_— ...(10)
2
r 08
Adding equation (9) and (10) we get,
62u azu 2 .2 62u 1 7.2 2 azu
gx—2+a—y?-(cos + sin 9)-6-;2~+r—2(sm 0+ cos )é-.;

1 .2 2 ou

- 0+ i

+r(sm cos) ™
%u 0% d'u 1 *u 1 0
t—=—t——tt——
ot ot st et roor
Which is required transformed equation.

Example 6. : If in the above example (5) if u= (Ar2 + Br"')sinnB then prove that

8%u 1 8% 1 ou_

or? r_zﬁ r or

Solution: u= (Ar"+ Br"') sinnB

0

Ou = n(Ar"’1 + Br"”“)sinnﬂ and % = (Ar" + Br‘") ncosn0

or

2
and % = n[(n—l) Ar" + Br? (n+ 1)]sinn9 and

%j;i = (Ar" + Br"')nz(—sinne )

Differentiation and
Expansion of Functions
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0% 1 w1 Bu — :
At It ;a-n[(n 1) Ar"? + 2(n+1)]sumﬁ

lxn

(a2 )Sm"e]+ xn(4r" + B ) xsinn
=smn0[n(n—1) A 40+ D)Br - n? A -2 B
+ndr"? —nBr ]
=sinn0x[ 4(n* —n-a"+8)r"7 + B(* +p-* - )" |
=0 ~ Proved !

MISCELLANEOUS EXAMPLES
Example 1. : If u = log(tanx + tan y + tanz) prove that
(stx)— + (sty)—— + (sm2z)——— =2
Solution : Given u=log(tanx+tany+ tanz)

Ou _ sec? x
O0x tanx+tany+tanz

Zx@—‘— sec’ xsin2x
Ox tanx+tany+tanz
or  sinpMo _ 2tanx (D)
Ox tanx+tany+tanz
Similarly,
.. O 2
g2y = any A2
8y tanx+tany+tanz
And sz, 210z ' ()

0z tanx+tany-+tanz
Adding (1), (2) and (3)

(31n2x)—+(sm2y) +(Sm22)__ =2 [fa.nx+tany+ tanz}

fanx+tany +tanz
=2

Example 2. : If z = xpf ( %’ ) show that

(i) xﬁz+ yiz-=2z

ox oy



i)
, y+x—
(ii) Ifz is constant, then £ (o) &)y oy
1(y/x) ){y_,ﬂ] o
dx
. Gi = X
Solution : Given z x;f[/y] (1)
(i) Aszis homogeneous function of x and y in degree 2, so from Euler’s theorem
we have
0z oz . )
—+ y—=2 Thi
xax yay z s proves (i)

(1) Aszisconstant, then from (1) xy j(% ] is also constant, which may be

written as ¢(x, y)= c(constanr).
then,
dy _ _0¢/0x

&  0¢/dy

. Now &(x, y)=xyf(%]
VAU VA
()= 4 (%)
()= 10%)
=</ (%) 2 (%)

& 2 10x)-(r* /=) 1 (/%)

d xf(y/=)-yS"(vx)
3112ty S (1) 2+ 3 1(315)= (7 15) S (/) =0

[x% + J']f (y/x)+f '(y/x)[y% —{;}0

‘-:&

or

l
W
‘ﬁ

g

"
-

or

P& e P x|

or f'(y/x){{--y%}[xx%w]f(y/x)

f'(y/x);(’”%]
S(y/x) y[y_,,_dz]

or

&

Differentiation and
Expansion of Functions
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Example 3. : Verify Euler's theorem for y" m{% )

Solution : Given u = y" su:{% ) then # is a homogeneous function of x and y of

degree n.

ou ., _
Then, e N e}

And g—yu—=xy"" sin(%]+ ) cos(%]x%
B o)
Adding (1) and (2) we get,
A VA A
or xa-bya:ny"si[{%]

or x Ou + y% =nu Thus Euler's theorem is verified !

ox

2
Example4. : If ax’ +2hxy + byt +2gx + 2 fy + ¢ =0, ﬁnd‘;T

Solution : Let¢(x.y) =ax+2hy + byt +2gx + 2+ =0,  ..(1)

———-—I =2ax +2hy + 2g, —'-—-t =2hx+2by+2
? 5 Yy +48, 4 > f

2
S TP SOV s ¥
We know that,
2y [qzr—-quS+ pzt]
o =- q3 ..(2)

Putting these values of p, q, r, s and t in equation (2), we get
(2hx +2by +2£) 20 - 2(2ax + 2hy + 2g) (2hx + 2by +2f) 2k

8%y +(2ax +2hy+2g)" 2b

o’ (2hx +28y +2£)°



8(ix+by+ f)a-Aax+hy+g) (x+by+ f) h+(ax+hy+g)° h
8(hx+by + )’
a(h2x2 +b%y? + £ +2bhxy + 2bfy ~i~2ﬂvc)—2|:1hz.7c2 - 2abhxy —2afhx
~ 2k xy —2bR%y* — 2K fy—2gh*x — 2bghy -2 fhg + a’xh+ b’ y?
+glh+ 2k xy + 2R gy + 2aghx

(hx+by+ f)’
(# - ab)[ax® + 2y + by? +2gx +2f7] - af* ~bg® +2fgh
(hx+by+ )’
-(c)(W* —ab)~af* —bg" +2fgh
= ( (hx?rby+f)3 from (1)
_abc+2fgh—af* —bg® —ch’
(bx+by+f)

Example 5.: If u=3(b+my+nz)’ ~(x*+ " +n°) and I'+m®+n’ =]

2 2 2
Show that 2 f+a §’+a Y o
ax® oy" oz

Solution : Given u = 3(L + my + nz)’ —(x2 +yi+ zz)
ou 62u 2

w—=6l(lx+my+xz)-2x and — =61"-2

Similarly,

otu

a2

2
=6m’ -2 and 9-7":6,.%2
oz
2 2 2
Ou, 0, 0% 62 _246m?—2+6x% -2
nd ot

=6( 1 +m*+x" 1)
=6(1-1) (v P rm’+n® =)

=0
sinx

: and tanhv=

Example 6.: If tanu= c0sx
sinhy coshy

Show that @ = and
ox

O g D
oy dy ox
COsX

Solution : Given tanu =—
sinhy

Differentiation and

Expansion of Functions
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LOu___ sox  _ sox
ox  sinhysec’u  ginky (1 + tan® u)

_ —S§inx a sinx sin Ay
B 2

or -
coSs x} sin® A%y +cos? x

Sdby

sinhyl 1 +

sinh?y

Now, tanhv= il
coshy

= ginxsechy

sechzv—ﬁ-v-— = ~ginx sec Ay tan by

or Ov _ —sinxsechytanhy —sinxsechy tanhy

ay sechzv l—ta_nhzv
_ —sinxsechytanhy  —sinxsinhy
l—sinhzx/coshzy coshzy—sinzx
- —sinxsin hy _ -sinxsinhy _ Qu
1+(sin2hy)-(1—coszx) cosh2y+coszx ox
ou_ou
& ox
Similarly we can prov ou__&v
Ox
EXERCISE

2 2 2 2
Q.1 Verify 2L -9/ wheuf:log(Jt b4 }x#O, y 0.
axdy Oyox xy

Q.2.If u=(1-25+ yz)% Show thatx%— y 2=yt

dy
Q3.0 Loli f[E7Y) Showthat x2 24 2 oy
u x xy Ox oy

Q.4. If u=(1-2xy+y2)% Showthatg;{(l—xz)%}+f—{y2@.}=0

(1)



Q.5.If u= ze™™ above zis a homogeneous function of x and y of degree n. Prove that

x%:—+ y%=(ax+ by + n)u

- , 2
Q.6.If u=4 7. g XAt Provethat@=a2§—v.
ot ox?

Q.7.If x=rcosb, y=rsind, z=f(xy), Prove that
HEHEEEEH]
) \oy) \or) rloo

a%u a"u_azu d%u

Q. 8. If x =Ecosa —nsin®, y =Esina + ncosa, Prove that pw +ay2 —6};2 +a112
Ou Ou Ju
. 9. Ifu= ~x,x~y) Prove that —+—+—=0
Q u=f(y-xx-y) oveaaxayaz
Q. 10. 1f = ¢"¢™"/ find what value of x will make 187,00 29, (Ans. : —3/2)
rrorl ov) ot

8%u =y 8%u -y du
Oyoz ° Oz0x  OxOy

Q. 11, If u=log(x* +’ +zz) show that  x

Q.12 Ifz=e“"+byf(ax—by) show that ng—zﬂrgy—z=2ab2

Q. 1. Show that the function u=log-, where r=(x-a)’ +(y~b)’ satisfies the
r

2 2
equation x% + Tu_ 0.

Q.14. If r2 =x>+y* + 2 and v=r" showthatv_ +V =m(m—1)r”"2,

Q.15. If u=cos™ ) showthatx@+y%+%cotu=0

J;+J; ox

Differentiation and
Expansion of Functions
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Q.16 If f(x,y) =+ 4 10BXT10BY showthatx%+y%+2f(x,y)=0
X

xy X" +y

Q.17. If[x}é + y%Jooseczu =x}é + y}é, prove that

2 2 2 tanu(12 + sec’ u
xza_ngwiLyz@_": ( )
ox awdy " oyt 144

Q.18. If f(x,y) = x2y4sin™ [% ) is a homogeneous function of degree 6. Hence or

otherwise find the value of x 24 + y%.

Q. 19. If vbe a function of r alone, where r* = x; +x3+...+x>. Show that

8%y 8% &_?_23 n—l.é‘v

—— e — R

ox) x5 o ot r or

2, A2
Q. 20. If u=f(r),showthatgx—3u+-gy—g=f”(r)+%f’(r) where r? = x? + 2.
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2 | Maxima and Minima

Chapter Includes:

Introduction

Increasing and decreasing functions
Sign of the derivative

Stationary value of a function
Maximum and minimum values
Local and global maxima and minima
Criteria for maxima and minima
Concavity and Convexity

9. Conditions for concavity and convexity
10. Point of inflection

11. Conditions for point of inflection

12 Applications of Maxima and Minima

Sadbe IR AN o

2.1 INTRODUCTION

2.1.1 Increasing and Decreasing Functions

A function y = f(x) is said to be an increasing function of x
in an interval, say a <x <b, if y increases as x increases. i.e. if
a<x, <x,<b, thenf(x) < f(x,).
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A function y = f(x) is said to be a decreasing function of x
in an interval, say a < X < b, if y decreases as x increases.
1e.if a <x, <x,<b, then f(x)) > f(x,).

2.1.2. Sign of the derivative

Let f be an increasing function defined in a closed interval
[a,b]. Then for any two values x| and x, in [a, b] with x, < X,,
we have f(x)) < f(x,).

- f(x,) < f(x,) and x,—%X,>0

N f(xz)—f(ﬁr,)20
X — X
Lt f(x)—1(x)

=  xuox — > 0, if this hmit exists.

= f'(x) >0 forall x €[a,b].

Similarly, if f is decreasing on fa,b] thenf’(x) < 0, if the
derivative exists.

The converse holds with the additional condition, that / &
continuous on [a, b].
Note

Let f be continuous on [a,b] and has derivative at each point
of the open interval (a,b), then

(1) Iff(x)>0foreveryx € (a,b), then f is strictly increasing on

[a,b]

() Iff(x) < 0for every x € (a,b), then [ is strictly decreasing
on [a,b]

i) Iff’(x)=0foreveryx € (a,b), then [ is a constant function
on [a,b]

(iv) Iff’(x) > 0for every x € (a,b), then f is increasing on [a, 5]
(v) IFf’(x)<0foreveryx € (a,b), then f is decreasing on [a,b]

The above results are used to test whether a given function is
increasing or decreasing.

2.1.3 Stationary Value of a Function

A function y = f{x) may neither be an increasing function nor
be a decreasing function of x at some point of the mnterval [a,b]. In
such a case, y = f{x) is called stationary at that point. At astationary
point f’(x) = 0 and the tangent is parallel to the x - axis.



Exampie 1

If y=x- -3;- , prove that y is a strictly increasing function
for all real values of x. (x= 0)

Solution :
We have y =x — —:;
Differentiating with respect to x, we get
dy 1

= 1 + — > 0 for all values of x, except x =0
x

¥ is a strictly increasing function for all real values of x. (x #0)

Example 2

Ify= 1+'31?’ show that y is a strictly decreasing function
for all real values of x. (x # 0)

Solution :

L

x

.‘?2=0—--L < O for all values of x. (x #0)
dx x?

We havey = 1 +

-y is a strictly decreasing function for all real values of x.
(x #0)

Example 3

Find the ranges of values of x inwhich2x* —9x* +12x+ 4
is strictly increasing and strictly decreasing.

Solution :
lety =2x*-9x2+ 12x + 4
dy 2 -
— —_ +
o 6x 18c + 12
= 6(x* —3x + 2)
=6(x —2)(x~—-1)

>0whenx<1 orx>2

RIS

x lies outside the interval (1, 2).

<0Owhen 1 <x<?2

B

. The function is strictly increasing outside the interval [1, 2}
and strictly decreasing in the interval (1, 2)
Example 4

Find the stationary points and the stationary values of
the function fix) = x* —3x* —9x + 5.
Solution :

Ilet y=x>—-3x2-9x+ 5

Maxima and Minima
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dy ., _
% 3x*~6x—-9
At stationary points, % = ()

S3xP—6x~9 =0
= x?-2x-3 =0
= x+1)x—-3)=0

The stationary points are obtained whenx = -1 and x=3
when x=-1, y=(1-3-1D?-9(-1)+5=10
when x=3, =3 -33»r-93)+5=-22
.. The stationary values are 10 and —22
The stationary points are (1, 10) and (3, —22)

Example S5

For the cost function C = 2000 + 1800x — 75x* + x* find
when the total cost (C) is increasing and when it is decreasing.
Also discuss the behaviour of the marginal cost (MC)

Solution :
Cost function C = 2000 + 1800 — 75x* + x°

%2— = 1800 — 150x + 3x*
4C - 0 = 1800-150x +3x? =0
— 3x% —150x + 1800 =0
— x?—50x + 600 =0
= (x-20)(x-30)=0
= x=20 or x =30
| ¥ = S
0 20 30
For,
@ 0<x<20,%—>0 () x = 10 then %S—-s=600>0
G) 20 <x<30,%$—<0 (ii)x=25ﬂ1en%x-g=—75<0
Gi) x> 30 ;%xg>o (iii) x = 40 then &= = 600 > 0

C is increasing for 0 <x < 20 and forx > 30.
C is decreasing for 20 <x < 30

_ 4
MC = == (C)
MC = 1800 — 150x + 3x2
%(MC) =150 + 6x



?&*(MC) =0 =6x=150
= x =25,
k b =
0 25

For,

(i) 0 <x < 25, de—(MC) <0 | @x=10 then%(MC)=—90< 0

i) x > 25, %(MC) >0 (i) x = 30 then%(MC)=30 >0

». MC is decreasing for x < 25 and increasing for x > 25,

2.1.4 Maximum and Minimum Values
Let f be a function defined on [a,6] and ¢ an imterior point
of [a,b] (i.e.) ¢ is in the open interval (a,b). Then
(1) fo) is said to be a maximum or relative maximum of the
function f atx = cif there is a neighbourhood (¢c—8, ¢ + 8) of
¢ such that for all x € (¢ — 8, ¢ + &) other than ¢, f{¢) > f(x)
(i) f{¢) is said to be a minimum or relative minirmum of the function
f atx = ¢ ifthere is aneighbourhood (¢ —8, ¢ + 8) of ¢ such
that for all x € (¢ — 8§, ¢ + 8) other than ¢, f{c) <f(x).

() f{c) is said to be an extreme value of f or extremum at ¢ if it
is either a maximum or minimum.

2.1.5 Local and Global Maxima and Minima
Consider the graph (Fig. 2.1) of the function y = f(x).

9 Fig. 2.1 )

The function y = Ax) has several maximum and minimum

points. Atthe points V|, V,, .. V_, %= 0. Infact the function has
maxima at V,, V,, V_, V, and minima at V,, V,, V,, V.. Note that
maximum value at V, is less than the minimumn value at V,. These
maxima and minima are called local or relative maxima and minima.
If we consider the part of the curve between A and B then the
function has absolute maximum or global maximum at V, and
absolute minimum or global minimum at V,.

Maxima and Minima
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Note

By the terminology maximum or mimimum we mean local
maximum or local minimuwm respectively.

2.1.6. Criteria for Maxima and Minima.

Maximum Minimum
e dy _ dy _
Necessary condition i 0 p 0
. . dy _ . 4%y dy . d'y
Sufficient condition - 0; —_dx’ <0 vl 0’_d.x'2 >0

2.1.7 Concavity and Convexity
Consider the graph (Fig. 2.2) of the function y = f{x).
Let PT be the tangent to the curve y = f{x) at the point P.

The curve (or an arc of the curve) which lies above the tangent line
PT is said to be concave upward or convex downward.

74 »=fx)

>
ol'T Fig. 2.2 *

The curve (or an arc of the curve) which lies below the tangent
line PT (Fig. 2.3) is said to be convex upward or concave downward.

2

P ¥ =fx)
—»
olT Fig. 2.3 x

2.1.8 Conditions for Concavity and Convexity.
Let f{x) be twice differentiable. Then the curve y = f{x) is
(1) concave upward on any interval if /7 (x) >0
(i) convex upward on any interval if f“(x) <0
2.1.9 Point of Inflection

A point on a curve y = f{x), where the concavity changes
from upto down or vice versa is called a Point of Inflection.



1
For example, in y = X* (Fig. 2.4) has a point of inflection atx = 0

v A

3

y=x

Fig. 2.4

2.1.10 Conditions for point of inflection

A point (¢, flc)) on a curve y = f{x) is a point of inflection
@) if f7(¢) = 0 orf”(c) is not defined and (ii) if f “(x) changes sign
as x increases through ¢ 1e. f7(¢) # 0 when f7"(x) exists

Example 6

Investigate the maxima and minima of the function
2x3 + 3x* —36x+ 10.

Solution :
Let y=2x*+3x* -36x + 10
Differentiating with respect to x, we get
dy _ o« - -
L = 6x? +6x-36 (1)
L 0= 6+ 6x-36=0
= x*+x—-6=0
= (x+3) (x-2)=0
= x=-3,2
Again differentiating (1) with respet to x, we get
d*y

d’y
dx:?.

when x = -3, =12(-3)+6=-30<0
It attains maximum at x = =3
Maximum value is y = 2(—3)> + 3(-3)* - 36(-3) + 10 =91

2

d'y

when x =2, ol 12(2) +6=30>0

.. It attains minimum atx = 2
~. Minimum value is y = 2(2) + 3(27 — 36(2) + 10 =-34

Example 7

Find the absolute (global) maximum and minimum values
of the function flx) = 3x% — 25x* + 60x + 1 in the interval
[—2, 1]

Maxima and Minima
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Given flx) =3x*-25x>+60x+ 1
i) = 15x4 - 75x% + 60
The necessary condition for maximum and minimum is
&) =0
= 15x% —75x*+ 60 =0
=x*—-5x2+4=0
=>x'—4x?-x*+4=0
= x*-1)(*—-4)=0

x =41, -2, Qe [-2, 1D
7 (x)=60x* - 150x
7(-2) = 60(-2)* - 150(-2) =-180<0

~. flx) is maxirmum.

-1 =601 -150(-1) =90>0

2~ flx) is minimam.

(=601 -150(1) =-90<0

s f(x) is maximum.
The maximum value when x = -2 is

=2) =3(-2) —25(=-2)* +60(=2)+1=-15
The minimum value when x = -1 is

=1 =31 —=25(-1)* +60(-1)+ 1 = -37
The maximum value when x =1 is

RAD =31y -25(1P +60(1)+ 1 =39

.. Absolute maximum value = 39.

and Absolute minimum value = -37

Example 8

What is the maximum slope of the tangent to the curve
y=-x*+ 3x* +9x — 27 and at what point is it?

Solution :
We have y = —-x* + 3x +9x — 27
Differentiating with respect to x, we get

Y _3x2 4+ 6x+9
dx

Slope of the tangent is —3x% +6x + 9

Let M =-3x% +6x + 9
Differenating with respect tox, we get

L Y Ju— (1

dx
. . dM _ d*M
Slope is maximum when I -Oa.nd—lz <0

dM _ _ _
F_O=’ bx + 6 0



= x=1
Again differentiating (1) with respect to x, we get

2
%;I\zd—=—6<0, S Mois maximum atx = 1

. Maximum value of M when x = 1 is
M==-3(1 +6(1)+9 =12
Whenx =1; y=—(1P +3(12 +9(1)-27=-16
. Maximum slope = 12
The required point is (1, -16)

Example 9

Find the points of inflection of the curve
y=2x* —4x3 + 3.

Solution :

We have y = 2x* — 4x> + 3
Differentiate with respect to x , we get

a4y g o
i 8x3 -~ 12x?
dZ

—5 = 24x* — 24x

2y

o =0 = 2x(x-1)=0
= x=0,1

d:!

E%=48x-—24
3

whenx =0, 1 ngj #=0.

points of inflection exist.

when x =0, y=20y-40rY+3=3

when x=1, y=2(1Y—-4(1p+3=1

The points of inflection are (0, 3) and (1, 1)
Example 10

Find the intervals on which the curve f{x) = x3—6x>+9x—8
is convex upward and convex downward.

Solution :
We have f{x) =x> - 6x* + 9x — 8
Differentiating with respect o x,
F'x)y=3x*-12x+9
f7x) =6x—12
) =0 = 6(x-2)=0 . x
— —

[ .
a
- 2 oo

2

Maxima and Minima
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For
(i) ~ee<x<2,f”(x)<0 D x=0thenf” " (x)=-12<0
(i) 2 <x <os [ (x)>0 (i) x = 3 then /~"(x) = 6 > 0

1y
2)
3)
4

3)

8)

9
10)

11)
12)

13)

14)

15)

.. The curve is convex upward in the interval (—ee, 2)

The curve is convex downward in the interval (2, o)

Exercise 2.1

Show that the function x® + 3 + 3r + 7 is an increasing
function for all real values of x.

Prove that 75 — 12x + 6x% — x®> always decrecases as x
increases.

Separate the intervals in which the function x* + &2 +5x — 2
is increasing or decreasing.

Find the stationary pomts and the stationary values of the
function flx) = 27 + 3x2 — 12x + 7.

For the following total revenue functions, find when the total
revenue (R) is increasing and when it is decreasing. Also

discuss the behaviour of marginal revenue (MR).
(1) R =-90 +6x* — x* (i) R = -105x +60x* —5x°

For the following cost functions, find when the total cost (C)
1s increcasing and when it is decreasing. Also discuss the
behaviour of marginal cost (MC).

(i) C =2000 + 600x — 45x2 + x° (ii)C=200+4Qx—%— 2.

Find the maximum and minimum values of the function

() x° —6x2 + 7 (i) 20 — 15 + 24x — 15
(iii) =2 + L5 (iv) x* —6x2 + % + 15

Find the absolute (global) maximum and minimum values of
the function f{x) = 3x* — 2522 + 60x + 15 in the interval

-3, 3l

Find the points of inflection of the curve y = x* — 4x + 2x +3,

Show that the maximum value of the function
Slx) =x* -27x + 108 is 108 more than the minimum value.

Find the intervals in which the curve y=x* —3x> + 32 + Sx + 1
is convex upward and convex downward.

Determine the value of output g at which the cost function C
= g* —6g + 120 is minimum.

Find the maximum and minimum values of the function
xP —S5x* + &* — 1. Discuss its nature at x = 0.

Show that the fuaction f{x) = x* + gf__& has a minimum value

at x = 5.

2 3
The total revenue (TR) for commodity x is TR = 12t+£2— ——%— ]

Show that at the highest point of average revenue (AR),
AR = MR  (where MR = Marginal Revenue).



2.2 APPLICATION OF MAXIMA AND MINIMA

The concept of zero slope helps us to determine the maximum
value of profit functions and the minimum value of cost functions.
In this section we will analyse the practical application of Maxima
and Minima in commerce.

Example 11
A firm produces x tonnes of output at a total cost

C = (-llo-anc"—ﬁx:2 + 10x +5). At what level of output will the

marginal cost and the average variable cost attain their
respective minimum?

Solution :
Cost C(x) = Rs.(1—16x3—5x2 + 10x +5)

Marginal Cost = %(C)

MC = txi—10x + 10
Average variable cost = Vanabjlce cost

AVC = (75x* - 5x + 10)

() Let y=MC = 5x?— 10x + 10
Differentiating with respect to x, we get

@=i —
% 5x~10
Marginal cost is mintmum when gt‘Z=Oand 'l>0
dx dx*
2y _ 3 c_10= =30
E—O: 5 x 10=0 orx 3
50 dy 3 , _
whenx—-i—, 2 "% >0 ... MC is minimumn.
.. Marginal cost attains its minimum at x = %gunits.
(i) Lctz=AVC=-lldx2—5x+10
Differentiating with respect to x, we get
dz _ 1 _
E
N _ z
AVC is minimum when ?x-—O, and e >0
dx_——0=>5x 5=0 =x=25.
d*z 1 C _ .
when x = 25, F=—5->0 . AVC is minimum atx = 25 units.

Average variable cost attains minimum at x = 25 units.

Maxima and Minima
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A certain manufacturing concern has total cost function
C =18+ 9x —6x* +x°. Find x, when the total cost is minimuam.

Solution :

Cost C=15+ 9% —6x? +x°
Differentiating with respect to x, we get

SL-9-12+3x* e (1)

o dc _ aC
Cost is minimum when e =0 and _dxz >0

L -0 = 3¢ -120+9-0
x*—-4x+3=0
= x=3 x=1

Differentiating (1) with respect to x we get

2
‘—i;zg =-12 + 6x
d’C . .
whenx =1, 2 =—-12+6=-6 <0 .. Cismaximum
d*C L
when x = 3, 2 =~-12+18=6 >0 ., Cisminimum
. when x = 3, the total cost is minimum
Example 13
The relationship between profit P and advertising cost
. 4000x _ . :
x fis given by P 00+ Find x which maximises P.
Solution : _
= 00x
Profit P = 500 7 x

Differentiating with respect to x we get
dp _ (500+ 4000 —(4000x)1) ,
dx (500 + x)’
_. 2000000
T 500+ x)*

. . dP d’p
L = ———
Profit is maximum when 1 0 and P 0

dP 2000000
ax ~ 0 = 500+
= 2000000 = (500 +xy

= 1000 X o/2 =500 +x

1=0




500 +x
x =914,
Differentiating (1) with respect to x we get
d’P 4000000
dx? (500 + x)°

2
. whenx =914 : fkl: <0 .. Profit s maxamurn.

Example 14

‘The total cost and total revenue of a flrin are given by
C=x*—-12x+ 48 + 11 and R = 83x — 4x? — 21. Find the
output (i) when the revenue is maximum (ii) when profit is
maximum.

Solution :
(i) Revenue R =83x —4x?-21
Differentiating with respect to x,

%% = 83 — 8x
4R
Rsvenueisma)dmumwhen%=0 mld%l%<0
L _0=83-8x-0 ~.x=5
Also Z;§=—8<0. . R is maximum
. When the outputx=§83-um'ts, revenue is maximum

(i) Proft P =R -~C
=(83x —4x? —21)—(x* — 12x* + 48x + 11)
=-x*+8?+35x—32
Differentiating with respect to x,

L — 3x2+ 16x + 35

2

fixI; =—6x + 16

) : dP d’p
Pxnﬁtmmammumwhen-&-x——o and e <0
%=0=>-3x2+ 16x +35 =0

=>3x2~16x—-35 =40
=> (3x+5) (x—7)=0

=>x=-—3—50rx=7
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henx = 52, 4E - 6(53)+ 16=26>0 . Pis mini

whenx = —=, 1—-(3) = ». P i1s mimomum
. ap : .

when x =7, 2 =-6(7)+16=-26<0 ., Pis maximum

. when x =7 units, profit is maximum.

Example 15

A telephone company has a profit of Rs. 2 per telephone
when the number of telephones in the exchange is not over
10,000. The profit per telephone decreases by 0.01 paisa for
each telephone over 10,000. What is the maximum profit?

Solution :
Let x be the number of telephones.
The decrease in the profit per telephone
= (x — 10,000) (0.01), x > 10,000.
= (0.01lx — 100)
The profit per telephone
= 200 — (0.01x — 100)
= (300 - 0.0 1x)
The total profit for x telephones
= x(300 - 0.01x)
=300x —0.01x?
Let the total profit P = 300x — 0.01x?
Differentiating with respect to x, we get

ﬂp —_— - Y eseaamws s
= =1300-0.02x (VD

Conditions for the maximum profit are
=0 and d’p <0
dx?

=0= 300-0.02x=0

BlS &%

= x = 290 = 15,000,
Differentiating (1) with respect tox we get
d*P
dx2
when x = 15,000, the maximum profit
P = (300 x 15,000) — (0.01) x (15,000 paise
= Rs. (45,000 — 22,500) = Rs. 22,500

‘. Maximum profit is Rs. 22,500.

=-~002<0 .. Pismaxmum

Example 16

The total cost function of a firm is C =-§f—5xr-+zsx +10

where x is the output. A tax at Rs. 2 per unit of output is
imposed and the producer adds it to his cost. If the market



demand function is given byp = 2530 — Sx, where Rs. pis the
price per unit of cutput, find the profit maximising output and
price.
Solution :
Total Revenue (R) = px
= {2530 — 5x)c = 2530x — 5x?
Total cost after the imposition of tax is

C+2x = —;-x'-‘ — 5x% +28x +10 +2x

= —;~x3—5x2+30x+10

Profit = Revenue — Cost
= (2530x — 5x2) — (3x° - 5x* +30x + 10)

P = -3 x>+2500x - 10

Differentiating P with respect to x,

dP  _

= = —x2+ 2500 = emeemeeees (1)
Conditions for maximum profit are

a2 _ d'P

p O and e <0

a  _ —x?

e 0 = 2500—x*=0

= x* =2500 or x=500
Differentiating (1) with respect tox

2
pras
_ d*pP . ) .
When x = 50, =y =-50<0 ..Pismaxanum

. Profit maximising output is 50 units

When x = 50, price p = 2530 —(5 x 50)
= 2530 — 250 = Rs. 2280

2.2.1 Inventory Control

Inventory is defined as the stock of goods. In practice raw
materials are stored upto a capacity for smooth and efficient running
of business.

2.2.2 Costs Involved in Inventory Problems

(1) Holding cost or storage cost or inventory carrying
cost. (C))
The cost associated with carrying or holding the goods in stock
is known as holding cost per unit per unit time.

(ii) Shortage cost (C)

The penalty costs that are incurred as a result of running out
of stock are known as shortage cost.

Maxima and Minima
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(iii) Set up cost or ordering cost or procurement cost : (C)
This is the cost incurred with the placement of order or with
the initial preparation of production facility such as resetting
the equipment for production.

2.2.3 Economic Order Quantity (EQQ)

Economic order quantity is that size of order which minimises
total annual cost of carrying inventory and the cost of ordering under
the assumed conditions of certainty with the annual demands known.
Economic order quantity is also called Economic lot size formula.

2.2.4 Wilson’s Economic Order Quantity Formula

The formula is to determine the optimum quantity ordered
(or produced) and the optimmum interval between successive orders,
if the demand is known and uniform with no shortages.

Let us have the following assumptions.
(i) Let R be the uniform demand per umnit time.
(1))  Supply or production of items to the inventory is instantaneous.
(i) Holding cost i1s Rs. C, per unit per unit time.

(iv) Let there be n orders (cycles) per year, each time g umts
are ordered (produced).

(v) Let Rs C, be the ordering (set up) cost per order (cycle).
let ¢ be the time taken between each order.

Diagramatic representation of this model is given below :

yA
P q
2
[}
=
O A x
— e~ S te— — !t
Fig. 2.5

If a production run is made at intervals ¢, a quantity q = Rt
must be produced in each run. Since the stock in small time dt
s Rt dr, the stock in period ¢ 18

j'Rr dt = 3 R
T -la @Rt =9
= Area of the inventory triangle OAP (Fig. 4.5).
Cost of holding inventory per production run = %C1 R#2.
Set up cost per productionrun = C,.
Total cost per production run = %Cl Rt + C,



Average total cost per unit time

C
C(r)=%c1 Rf+ =% coeceenes (1)
t 2
C() is minimum if 2-C(f) = 0 and ;’?C(:) >0
Differentiating (1) with respect to t we get
d 1 c
7€ = 5C R- Tf— --------- (2)
d _ 1 S
= C(1) 0 = 3 C, R o 0
o j2¢G,
= I =yCR
Differentiating (2) with respect to t, we get
dz C —_ 2C3 0 h - 2&
dtz (t)— e > U, whent = ClR

Thus C{) is minimum for optimum time interval

_ 25
.= yCRr

Optimum quantity g, to be produced during each production run,

2C,R
EOQ =g, =R = C,

This is known as the Optimal Lot - size formula due to Wilson.
Note : (i) Optimum number of orders per year

_demand _ [ & RGO
T EOQ T TY2C,R T y2C, ¢,

(i) Minimum average cost per unit time, C) = -J2C1C3R

(i) Carrying cost = %“-x C,. Ordering cost = qu-x C,
1]

@iv) At EOQ, Ordering cost = Carrying cost.

Example 17

A manufacturer has to supply 12,000 units of a product
per year to his customer. The demand is fixed and known
and no shortages are allowed. The inventory holding cost is
20 paise per unit per month and the set up cost per run is
Rs.350. Determine (i) the optimum run size g, (ii) optimum
scheduling period ¢, (ili) minimum total variable yearly cost.

Solution :

- 12,000
12
C, = 20 paise per unit per month

1

Supply rate R = 1,000 units / month.

Maxima and Minima
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C, =Rs. 350 per run.

3

. _ J2G,R 0 [9%350x1000
ORI * 'WJ c, 0.20

= 1,870 units / run.
= [2Cs _ [ _2x350
b7 JCIR = V020 x1000 6 days
(i) C,= f2C,C,R = J2x0.20x12x350 x(1000x12)
= Rs.4.490 per year.

Example 18

A company uses annually 24,000 units of raw materials
which costs Rs, 1,25 per unit, placing each order costs Rs.
22.50 and the holding cost is 5.4% per year of the average
inventory. Find the H)Q, time between each order, total
number of orders per ycar. Also verify that at POQ
carrying cost is equal to ordering cost

Solution :
Requirement = 24,000 units / year
Ordering Cost (C,) = Rs.22.50

Holding cost (C) = 5.4% of the value of each unit.

_ 5.4
100 % 1,25

= Re.0.0675 per unit per year.

_ /ZRC:« _ [2x2400x22.5 _ :
EOQ = C. = J 5.0675 = 4000 units.

Time between each order =1 R 54000 g YeX
_R 24000 _
Number of order per year = g0~ 4000 "
At EOQ carrying cost=—q£°~ xC, = 40;)0 x0.0675 =Rs.135
. - R _ 24000 -
Ordering cost = == X C_ = 3000~ X 22.50 = Rs.135

s]

Example 19

A manufacturing company purchases 9000 parts of a
machine for its annual requirements. Each part costs Rs.20.
The ordering cost per order is Rs.15 and carrying charges
are 15% of the average inventory per year.

Find (i) economic order quantity
(ii) time between each order
(iii) minimum average cost


http:Rs.22.50

Solution

iy

2)

3)

4)

3)

Requirement R = 9000 parts per year
C, = 15% unit cost
= 11050 x 20 = Rs.3 each part per year.
C, = Rs.15 per order
2C,R
EOQ c Jz X15 %9000
= 300 umnits.
_ 9 _ 300 _ 1
o =R T 9000 ~ 30 YA
- 365

30 - 12 days (approximately).

Minimum Average cost = .JZCIC,R

= J2x3x15%9000 = Rs.200

EXERCISE2.2

A certain manufacturing concern has the total cost function
C= -;—xl —6x + 100. Find when the total cost is minimum.

A firm produces an output of x tons of a certain product at a

total cost given by C = 300x ~ 10x* + 1-x°. Find the output at

which the average cost is least and the corresponding value of
the aveage cost.

The cost function, when the output is x, is given by

C =x (2¢* +e ). Show that the minimum average cost is 22

A firm produces x tons of a valuable metal per month at a

total cost C given by C = Rs.(3x> — 5x? + 75x + 10). Findat
what level of output, the marginal cost attains its minimum.

A firm produces x units of output per week at a total cost of
Rs. (32> —x* + 5 + 3). Find the level at which the marginal
cost and the average variable cost attain their respective
minimum.

It is known that in a mill the number of labourers x and the
total cost C are related by C = '2Tx3—4) 2 x. What value
of x will minimise the cost?

3
R=2lx-x*and C = xT—Bx‘ + 9¢ + 16 are respectively the
sales revenue and cost function of x units sold.

Find (i) At what output the revenue is maximum? What is
the total revenue at this point?

Maxima and Minima
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Business Mathematics (ii) What is the marginal cost at a minimum?

(11i) What output will maximise the profit?

8) A firm has revenue function R = & and a production cost
z

function C = 150000 + 60| = ] . Find the total profit function
and the number of units to be sold to get the maximum profit.
9 A radio manufacturer finds that he can sell x radios per week

at Rs p each, where p = 2( 100—-%). His cost of production

2
of x radios per week is Rs. (120x+ -'%—). Show that his profit

18 maxmnum when the production is 40 radios per week. Find
also his maximum profit per week.

10) A manufacturer can sell x items per weck at a price of
p = 600 — 4x rupees. Production cost of x items works out to
Rs. C where C = 40x + 2000, How much production will
yield maximum profit?

11) Find the optimum output of a firm whose total revenue and
total cost functions are given by R = 30x —x? and C =20 +4x, x
being the output of the firm.

12) Find EOQ for the data given below. Also verify that carrying
costs is equal to ordering costs at EOQ.

Item | Monthly Ordering cost Carrying cost
Requirements | per order Per unit.
A 9000 Rs. 200 Rs. 3.60
B 25000 Rs. 648 Rs. 10.00
C 8000 Rs. 100 Rs. 0.60

13) Calculate the EOQ in units and total variable cost for the
following items, assuming an ordering cost of Rs.5 and a holding
cost of 10%

Item Annual demand Unit price (Rs.)
A 460 Units 1.00
B 392 Units 8.60
C 800 Units 0.02
D 1500 Units 0.52

14) A manufacturer has to supply his customer with 600 units of
his products per year. Shortages are not allowed and storage
cost amounts to 60 paise per unit per year. When the set up
cost is Rs. 80 find,

(i) the economic order quantity.
(ii) the minimum average yearly cost
(ii1) the optimum number of orders per year

(iv) the optimum period of supply per optimum order.

t-In,



15) The annual demand for an item is 3200 units. The unit cost is
Rs.6 and inventory carrying charges 25% per annum. If the
cost of one procurement is Rs.150, determme (i) Economic
order quantity. (ii) Time between two consecutive orders
(iit) Number of orders per year (iv) minimum average yearly cost.

2.3 PARTIAL DERIVATIVES

In differential calculus, so far we have discussed functions of
one variable of the form y = f{x). Further one variable may be
expressed as a function of several variables. For example,
production may be treated as a function of labour and capital and
price may be a function of supply and demand. In general, the cost
or profit depends upon a number of independent variables, for
example, prices of raw materials, wages on labour, market
conditions and so on. Thus a dependent variable y depends
on a number of independent variables x , x,, x,.x . It is
denoted by y = f(x,, x,, x,..x,) and is called a function of »n
variables. In this sec‘tlon, we will restrict the study to functions of
two or three variables and their derivatives only.

2.3.1. Definition

Let u =j{x, ¥) be a function of two independent variables x
and y. The derivative of f{x, y) with respect to x, keeping y
constant, is called partial derivative of # with respect to x and 1s

denoted by -g-%‘c— or %E or f_or u_. Similarly we can define partial

denvative of f with respect to y.
Thus we have

@( 1t f(x+Ax,y)-—f(x,y)
ax T Ax 0 Ax

provided the limit exists.
(Here y is fixed and Ax is the increment of x)

Lt . Kxy+ay)—f(x )

provided the limit exists.
(Here x is fixed and Ay is the immcrement of y).

2.3.2 Successive Partial Derivatives.

The partial denvatlves . and -L are in general functions
of x and y. So we can differentiate functlons —g{;— and % partially
with respect to x and yp. These derivatives are called second
order partial derivatives of f{x, ¥). Second order partial derivatives
are denoted

Muaxima and Minima
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o [of o

oy a(ﬁx‘] "o e
o_(ory _ 9/ _
-5;— ay o a_y2 df)’?
9 () _ 9/ _
ox \ 9y ) axay—fxy
2. (o) _ 9of _
gy | O0x ) dydx =Js

Note

Krf f./7, arecontjnuousthenfxy=fﬂ

2.3.3 Homogeneous Function
A function f(x, y) of two independent variable x and y
is said to be homogeneous in x and y of degree »n if

flx, ty)=t*f(x, y) fort > 0.

2.3.4 Fuler’s Theorem on Homogeneous Function
Theorem : Let f be a homogeneous function in x and y of

degree n, then -
L/ Qi -

* ox nf
Corrollary : In genenal f f(x 1, X, X,.-.X, ) is a homogeneous function
of degree »n invanablesx , x,, x,.. x,, then,

d 2 a d

xl'&{" 25—1:- +x, af "'+xm§.i:-=nﬁ

Example 20

It u(x, p) = 1000 — x* — > + 4% + 8y, find each of the
following.

02w

o B 3 @y‘ ooy 021 9% %u *u
® 3 W5 W M Magy OV 5e:
Solution -

u(x, y) = 1000 — x* —3* + 4x*” + 8y

@ 2 =L (1000-x -y + & + &)

=0-3x-0+4Gx)F +0
= —3x? + 12x%F,

(i) %% =%(1000——x3-y"+4x3}ﬁ+8y)

=0-0-2y+ 43(6)°) + 8
= -2y +24x3° + 8

... 9'u _ 9 (du
O e (ax)



= % (—3x1 +1 2x1y‘5) Maxima and Minima

= —6x +12(2xps
= —6x + 24xy*5

- u 3 (Ju
awv) ayz = 3y [—a-;j
9
= '33;(—2)) + 24x%)F + 8)

= —2 + 24x3(5)4) + 0
=-2 + 120x%"

u _ 9 [9u
82 ax0y  Ox [ay)
= 2 (2y+ 24y +8)

0 + 243x¥)y" + 0
= 72x%".
. u _ 9 (du
o0 ayi;fx B -@-[ax)
— o3+ 12x39)
=0 + 12x%(6)°) = 72x%)5

Example 21
If ix, ) = 3x* + 4p* + 6y — x*p*> + S fimd () £, (1, -1)
@) £,(1,1) (D (2, 1)

Selution :
J;"‘“'gx"(f) = %(3x2+4y3+6xy—~x2y3+5)
=&+ 0+6(1)y—(2xp*+0
= 6x + 6y — 2x)°.
£l =1) = 6(1) + 6(—1) — 2(1)(-1)* =2

. 0 9

© £-HO - F e ey

1237 + 6x — 3x3R

I

-
= a%'(uf + 6x — 3x%4)
= 24y — 6x%y

(1) =18




Duyness mainemancs ) 5 of N
' (iit) f,,=3;(TyJ = == (127 + 6x — 3x%7)
=6 — 6x)?
f2. ) =-6
Example 22

Ifu= log.,[;.;"l + y* + 2 , then prove that

3%u + 2w  9u _ 1

oxz oy’ tozz T x* + y* + z?
Solution :
We have u= -%—log ®ET+3F+28) memeemeaea (D)
Differentiating (1) partially with respect to x,

ou _ 1 _2x _ X

Bx 2 x*+3y2+2z2 T xXr+yr4z?

d

o*u du
ax* 1—3;(_6;)
9 ( x ]2 (x + y* +22X1) —~ x(2%)

T 0x | X% 4yt z? (x*+y* +2*)?

XAyt -2 X4yt 2
(X +3y*+2*)? (P +yr+z?)?
Differentiating (1) partially with respect to y we get,

Ju x

dy T P+ 4zt

Fu (Y +2HD)-y2y) -y P+

ayz = O + y* +2%)? = (xz +y2+zz)z
Differentiating (1) pa.rtially with'respect to z we get,

o _ —Z

o0z  xX*+yr+z

9ty (T +yP+zYD—2z(22) -z +x" +y?

9z & +y* +2*)* T (xP+yP+ 22

u  Ou 0 _ -+ 42—y 42+t +x* 4+ )

ox* oy 9z (" +y*+2°)

x* 4+t +27 1

T Hyi i) P +yi 42

Example 23

Verify Euler’s theorem for the function

u(x, y) =x*+y* + x%.
Solution :

We have u(x, y) =x* +3* + x>y ---c-eme- (1)
Self-Instructiopal Material u(tx, )= 3x3 + £° + £2x* (1y)




= £+ +x) = u(x, )

u is a homogeneous function of degree 3 in x and y.

. du du
We have to verify thatxa- Yoy = 3.
Differentiating (1) partially with respect to x, we get
%"; = 3x? + 2xp
x%:- = 3x* + 2y
Differentiating (1) partially with respectto vy, we get

%‘; 33y1+x2
5
y'é% = 3y? + x%y

. ou
x-a—z-+y'5;= 3x* + 2x%y + 3)° + x%y

=303 +xty +)P) = 3u
Thus Euler’s Theorem is verified, for the given function.
Example 24
4 + Pl
Using Euler’s theorem ifu = logix_—_i_—
ou die _
show that x=-tye, 3.

Solution :

T Tx—y
This is a homogeneous function of degree 3 in x and y
By Euler’s theorem,
d
x 2 () +y 5y () = 3¢
au u au = yu
x &' -aT\.‘- + ye 'ry' 3¢ ;
g u Ou gu
dividing by e* we get x == +yay 3

Example 25
Without using Euler’s theorem prove that

x%+y% +z% = 4u, ifu = 3Ixryz + Adxpiz + 5"

Solution :
We have u = 3x%yz + 4xy?z + 5/ --ecee-- (1)
Differentiating partially with respect to x, we get

%‘c- = 3(2c)yz + 4(1 )Pz + 0
= 6xyz + 42z

Maxima and Minima
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Differentiating (1) partially with respect to ), we get
du
y = 3x¥ (1 + x(2yx + 205
= 3x*z + Bxyz + 203°
Differentiating (1) partially with respect to z, we get
% = 3x*(1) + c3(1)+ 0
= 3x?y + dxy?
au Ou du
= 6x2yz' + dxylz + 3x%yz + Bxyiz + 2004 + 3x?yz + 4xyiz
= 12x%*yz + 16xy%z+ 2004
= 4 (3x*yz + dxyrz+ S5y) = du
Example 26

The revenue derived from selling x calculators and y
adding machines is given by R(x, y) = —x*+8x—2y*+6y+2x+ S0.
If 4 calculators and 3 adding machines are sold, find the
marginal revenue of selling (i) one more calculator (ii) one
more addmg machine.

Solution : '

(i)  The marginal revenue of selling one more calculator is R,
ng’x (R) = .%(—xz + 8 — 2% + 6y + 2xy + 50)
=~2x+&~0+0+2(1Xy)
R(4,3) =—2(4)+8+23)=6

. At (4, 3), revenue is increasing at the rate of Rs.6 per
caculator sold.

‘. Marginal revenue is Rs. 6.
(i) Marginal Revenue of selling one more adding machine is R
=%(R) = 0 (2 + 8 — 237 + 6y + 2xy + 50)
= 0+0—4y+ 6+ 2x(1)
=4y + 6 + 2x
R(4, 3) =-4(3) + 6 + 2(4) = 2
Thus at (4, 3) revenue is increasing at the rate of
approximately Rs.2 per adding machine.
Hence Marginal revenue 1s Rs.2.

EXERCISE 2.3

1) Ifu=de -3 + 6xy, find and g"

2) Ifu=x>+3*+ 2 —3xyz, provethatxau +yg; +z-g%-=3u
3) Ifz = 4x® — 8x® ~ Tx + 6ixy + 8y +x3y°, findeachofthefollwomg
. . 0* 9’z 9’z
oL @ @I wmetois ik




4

5)

8

9)

10)
11)

12)

13)

14)

If flx, y) = 4 — 8 + 6°y* + & + & + 9, evaluate the
following.

O (1) (2, 1) Gii) f,, (v} /(0. 2)
M)/ v f (2 1) (viDf, (vii} £, (1, 0)
)£, ® /23 )02 3)

If u = x*y + y?z + z2x, show that gu +g?;+gu = (x+ y+ 2
Ifu= log.,’x2 + y* , show that [%E-) +(%§-J = ;—;_—‘1_-'-;1—
Ty = 0’u _ 9’u
u = x> + 3xy* + ), prove that axay = dyox
—_—r ) -
If e~ = x -y, prove thatygi 6 =x% -y

z - 2z
Verify that 5%54; = %{5‘; for the function u = xy + sinxy.
’ 2 2 2

d
If u = log (x* + y* + z*) prove that x 3y0s :Yr%ﬁg :zaxgy
Verify Buler’s theorem for each of the following functions.

(B u= % () f= xt+ yt 34yt
L XY e 1
(i) z = x+ (WWyu = X% + y?

x>+ 3° . y
(v)u—m (viy u = x log _x_]

Use Euler’s theorem to prove the following

x2+ z ou o
. _.r__L Ju w3
(1) Ifu= Py then prove that -y +y-5}7 5 U
oz

(i) Ifz = e *¥ then prove that.x‘%c- + y-é;’ 3z logz
2

B +p? of of
(m)Iff—log[x+y)thenshowthatx—a;+yay 1
r r
(iv) If u = tan? [-xx——t-z—] then prove that
o 1
xa‘ +yay =% sin e,

3

Without using Euler’s theorem prove the following

b Z

() If = }-+; then prove that

y’
ou ,  Qu. QU _
x-é;+yay+zaz =90

- du ou _
() If u= log————L then prove that x5+ % y-gy— =1
The cost of producmg x washers and y dryers is given
by C(x, ¥) = 40x + 200y + 10xy + 500. Presently, 50 washers
and 90 dryers arc being produced. Find the marginal cost of
producing (i) one more washer (ii) one more dryer.

Maxima and Minin
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15) The revenue derived from selling x pens and y notebooks is
given by R(x, ¥) = 22 + y* + 4x + 5y + 800
At present, the retailer is selling 30 pens and 50 notebooks.
Which of these two product lines should be expanded in order
to yield the greater increase in revenue?

16) The annual profit of a certain hotel is given by
P{x, y) = 100x? + 4* + x + & + 10000. Where x is the
number of rooms available for rent and y» is the monthly
advertising expenditures. Presently, the hotel has 90 rooms
available and is spending Rs.1000 per month on advertising.
(1) If an additional room is constructed, how will this affect

annual profit? .
(i) If an additional rupee is spent on monthly advertising
expenditures, how will this affect annual profit?

2.4 APPLICATIONS OF PARTIAL DERIVATIVES

In this section we leamn how the concept of partial derivatives
are used in the field of Commerce and Economics.

2.4.1 Production Fanction

Production P of a finn depends upon several economic
factors like investment or capital (K), labour (L), raw material (R),
etc. Thus P=F(K,L, R, ..). If P depends only on labour (L) and
capital (K), then we write P =fL, K).
2.4.2 Marginal Productivities

Let P = f{L, K) represent a production function of two
variables 1. and K.

g—i is called the ‘Marginal Productivity of Labour’ and —gl%

is the ‘Marginal Productivity of Capital’.
2.4.3 Partial Elasticities of Demand

Let g, = fip,. p,) be the demand for commodity A which
depends upon the prices p, and p, of commodities A and B
respectively.

The partial elasticity of demand g, with respect to p, is defined as

_o 9% _Eq

a o, - Ep,
Similarly the partial elasticity of demand of g, with respect to

price p, is - P 99, _Ea_
4% dp, Ep,

Example 27

Find the marginal productivities of capital (K) and
labour (L), if P=10K-K?+ KL, when K=2 and L.=6

Solution :
We have P= 10K — K2 + KI. ----rceemeoc (D



The marginal productivity of capital is g—i
.. Differentiating (1) partially with respect to K we get
opP
— =10- +
S~ 0-2K+ ()L
=10-2K + L
dP
when K =2, and L =6, K- 10-22)+6=12

The marginal productitivy of labour is g%
. Differentiating (1) partially with respect to L. we get
)

when K=2, and L =6 5-17:,2_
.. Marginal productivity of capital = 12 units
.. Marginal productivity of labour = 2 units
Example 28

For some firm, the number of units produced when using
x umits of labour and y units of capital is given by the

i 3
production function f{x, y) = 80 x* y*. Find (1) the equations

for both marginal productivities. (ii) Evaluate and interpret
the results when 625 units of labour and 81 units of capital
are used.

Solution :
. i 1
Given f{x, y) =80x* »*  eeemeaees (D
Marginal producitivity of labour is f (x, y).
. Differentiating (1) partiatly with respect to x, we get
] 23 3 2
1, =80 ax Syt =20x"yp*
Marginal productivity of capital is £ (x, ¥)
. Differentiating (1) partially with resepect to y we get
1 L i 1
1, =80 x‘[%}v *=60x*y *
=3
@ £(625,81) = 20(625) (@81

_ . _
=20 [125] (27) = 4.32

i.e. when 625 units of labour and 81 units of capital are used, one
more unit of labour results in 4.32 more units of production.

7625, 81) = 60 (625)4(81)*

Maxima and Minima
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2

= 60(5)@) ~ 100

(1.e.) when 625 units of labour and 81 units of capital are used,
one more unit of cap1tal results in 100 more units of production.

Example 29
The demand for a commodity A is q, =240—p” +6p,—p, p..
Find the partial Elasticities -E—'i‘l- and Egz whenp =Sandp, =4.
Solution :
Giveng, = 240 —p* + 6p, —p, p,
?a%i— =—2p TP,
O k. b g
Ep, g, op
= = (~2p, ~p,)

'240*p12+6p2—p1p2
whenp, =5 andp, =4

Eq ) __-()10-4) _ 70
Ep, 240-25+24-20 219

. Ea p 9g
(11) Epz B Q1 apz
_EZ_(G_-JDI)

240-p*+6p, - p,p,
whenp = 5-andp, =4
Eg) ___-46-5) _ _ _q
Ep, 240 -25 +24 -20 219
EXERCISE 2.4

1) The production function of a commodity s
P = 10L + 5K - L? - 2K?* + 3KL.
Find (i) the marginal productivity of labour
(ii) the marginal productivity of capital
(iii) the two marginal productivities when L= 1 and K = 2

2) If the production of a firm is given by P = 3K?L? - 21° - K¢,

proye that L g{— + K—g%;— =4P.

3 If the production function is Z = 3? —xp +x* where x is the
labour and y is the capital find the marginal productivities of
x and y when x=2 and y =3,



4)

5)

7

8)

9)

10)

For some firm, the number of units produced when using x
units of labour and y units of capital is given by the production

function flx,y) = 100 x* y'}. Find

(1) both marginal productivities.

(1) interpret the results when 243 units of labour and 32 units
of capital are used.

For the production function p = S(L)°7 (K)°? find the
marginal productivities of labour (L) and capital (K) when
L =10 and K = 3.

For the production function P = C(L)* (K)® where C is a
positive constant and if o0 +f3 = 1 show that

JaP ap
KaK +LaL P.

The demand for a quantity A is g, =16 ~3p, — 2 p2 . Find

(i) the partial elasticities -, 'E:Tl (i) the partial elasticities
2

forp, =2 and p, = L

1
The demand for a commodity A isq, = 106 -3p, ~2p,. Find
the partial elasticities when p, = p, = 1.

The demand for a commddity X isq, =15 - )23 —3p,. Find
the partial elasticities when p, =3 and p, = 1,

The demand function for a commodity ¥ is g, =12-p2 +
p,p,- Find the partial elasticities when p, = 10 and p, = 4.

EXERCISE 2.5

Choose the correct answer

D

2)

3)

4)

5)

The stationary value of x for f{x) = 3(x-1)x-2) 18
3 2 -3

(a)3 (b) > (c) 3 (d) >

The maximum value of f{x) = cos x is

(a) 0 (b) -‘-fl © 3 (d) 1

y =x*is always
(a) an increasing function of x (b) decreasing function of x

(c) a constant function (d) none of these.

The curve y =4 - 2x —x* 18

(a) concave upward (b) concave downward
(c) straight line (d) none of these.

Ifu= = *  then %is equal to

(a)y'u (b) x*u () 2xu (d)

Maxima and Minima
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8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

If u = log (& + &¥) then %";+ %;Tisequalto

1 e”
@ i W =E— @1 (d) & + &7

If u = x¥ (x> 0) then 'g% is equal to

(a) Zlogx (b) log x (c) ylog x (d) log y~
xT 4 yr A

Sx, v = -T+—y*_ s a homogeneous function of degree
x

1 1 1 1

@ 3 ®) 3 © & @

If x, ) = 2x + ye%, thenj; (1, 0) is equal to

OF ) < ©) e @ =

Iffix, ) =x+ 3 + 3xy then f_ is

(a) 6x (b) & () 2 (d)3

If marginal revenue is Rs.25 and the elasticitiy of demand with
respect to price is 2, then average revenue is

(a) Rs.50 (b) Rs.25 (c) Rs.27 (d) Rs.12.50
The elasticity of demand when marginal revenue is zero, is
(a) 1 (b) 2 (e) -5 (d) 0

The marginal revenue is Rs.40 and the average revenue is
Rs.60. The clasticity of demand with respect to price is

(a) 1 (b) O (c) 2 (d)3

- 2 2 .
1f u = x* — 4xy + y* then ay? is

(a) 2 (b) 2cy () 2%y (d) 2xy?
If z=x* + 3xy? + 3* then the marginal productivity of x is
(D +y (b)) &y + 3B ()3 + ) (@) + )
If g, = 2000 + 8, —p, then —g% is

1
(a) 8 (b) -1 (c) 2000 (d) 0
The marginal productivity of labour (L) for the production
function P= 15K —-L2 +2KIl.when L=3 and K = 4 is
(a) 21 ®) 12 (c) 2 (d) 3
The production function for a firm is £ = 312 — 5KL, + 2K,

The marginal productivity .of capital (K) when L = 2 and
K=31s

(a) 5 (b)3 (c) 6 (d)2

The cost function y = 40 — 4x + x* is minimum when x
(ayx=2 o) x=-2 (c)x=4 (DHx=-4

If R = 5000 units / year, C, = 20 paise, C, = Rs.20 then EOQ is
(a) 1000 (b) 5000 (c¢) 200 (d) 100
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3 |Integration

Chapter Includes:

1. Indefinite integrals as Antiderivatives

2. Methods of Integration

3. Basic Theorem on Integration

4. Some Special Integrals

5. Integration by Parts

6. Integration by Partial Fraction

7. Integration of Rational and Irrational Algebraic Functions

8. Integration of Transcendental Function

9. Definite Integral

10. Evaluation of Definite Integral by Substitution

11. General Properties of Definite Integral

12. Definite Integral as the Limit of a Sum

13. Application of Definite Integral to Find the Sum of Iufinite
Series '

INTRODUCTION :

In our earlier classes we have read four fundamental operations, namely addition,
subtraction, multiplication and division, It i3 admitted fact that subtraction is inverse
process of addition where as division is reverse process of multiplication.

Integratic
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Similarly, integration is reverse process of differentiation. We have already discussed in
earliar section that for a function fon an interval I, we can find its derivative £ at every
point of the interval, Now, here question arises, if derivative of a function is known in an
interval, can we find the function? The answer is ‘yes' we can find the function, if we
know that the derivative of a function is also a function, which may be a costant or the
function of independent variable. The set of functions that give as a derivative are called
antiderivatives of fax function. The formula that gives all the

antiderivatives, is called the indefinite integral of the function and the
processinvoived,is called integration. Integral calculus was developed for solving the
problems of finding areas, enclosed by the curves volumes of solids of revolution.
Integral calculus involves two types of integral namely indefinite and definite interals,
first we will discuss the indefinite integral.

3.1 INDEFINITE INTEGRALS AS ANTIDERIVATIVES :

We know that
5 _

B
—d—(smx) =COSX (ii)
- =
di
E(e ) =g (1)

and —‘i(log x) = Lo (iv)

dx ¢ x

2
We observe that in (i) the polynomial function x is the derived function of -{2—, we say

2
thatx—z— is the anti-derivative {or integral) of x. Similarly from (ii), (iii) and (iv) sin x,

e and log, x are the antiderivatives of {or integrals) of.cos _x,e * and 1 respectively.
x

Since the derivative of a real number say C, treated as constant functien, is zero and
hence the equations (i), (it), (iii) and (iv) can be rewritten as :

2
—{iE—+C =X
drel 2

%(sini +C) =cosx




d Integration
—(e™+ C) =e"
dx

and -gx-(loge x + C) = % Now choosing the the value

of C arbirtary from the set of real numbers there exists infinitely many antiderivative of
each of the functions mentioned above and as such the antiderivatives (or integrals) if
these functions are not unique. The real number C is referred as arbitrary constant or
constants of interation or parameter of integration,

More generally, if there is a function F of x such that
%[F(x)] = f(x) as x € [ ( an internal)
Then for any real number C,
%[F(x +O)|=f(x) xel

Thus, [F(x) + C;C € R] denotes the family of antiderivative of f(x), where C, denotes
the the arbitrary constant or parameter integration.
Now, we introduce a new sumbol, namely j f{x)dx, for integration (or antiderivative)
of
A(x), wewrite [ f(x)dx = F(x)+C A1)
When C is any real number, referred as constant of integration. Due to uncertainity of
values of C, the integration mentioned in equation (1), is called indifinite integral.
Notation : Given that. —% = f{x), we write

y=[f@xdx+C

Here,
x is called variable of integration.
f(x)dx  is called integration of f(x), with respect to x.
fx) is called 'integrand’ .
C is called constant of integration.
" The process of finding integral of a function, is know as interation."

3.2 METHODS OF INTEGRATION :

We already know the formulae for the deriavatives of so many important
functions from which we can write directly the corresponding standard formulae
for the integral of the functions to be integrated. Besides these,there are four
methods to find the integration of functions, which are mentioned below :

(i) Integration by Substitution.
(11) Integraﬁon by parts Self-Insgructopal Mugera, !

ars
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(111) Integration by partial fraction.
(iv) Integration by Successive Reduction,

3.2.1 INTEGRATION OF STANDARD FUNCTIONS :
We know that,

4 x" +C) =nx""!
dx
g jnx”‘ldx=x" +C - (from the definition of integration)

n+l
And f-j" =x"
dx’ | n+1

rtl

. _[x“dx=z+1 (n i)
d l
E(loggx) =;
I%dx0=logex+c (n#-1)

In this way we can find the integration of standard functions from differentiation.
Below we give a table for derivatives and antiderivatives (or integrals) of some

standard functions.
:ELE'EI‘;Q;WATIVE) DIFFERENTIATION
(0 jx"dx=;’:;+c ne-l de—::w %"
(i) j%dx =logi+C %log,_,x = %
(1) jexdx =& +C %(e’) =e
(iv) Ia‘dx = lo:: - +C %(a’) =g"log,a

W) Isinxdx =~cosx+C %(cosx) =-sinx

(vi) _[cosxdx =sinx+C —d—(sinx) =COSX
o dx
(vii) [sec’ xdx =tanx+C %(tanx):seczx




(viii) j cosec’xdx = —cotx +C

%(cotx) =—cosec’x

Isecxtanxdx:secx+C

(x) Icosecx cotxdx = —cosecx +C

| dx

4 (secx) =secxtanx

gx—(cos ecx) = —cosecxcotx

. 1
« [ —

d . _ 1
E(sm 1J:):: - xz

-1

.. -1
(i) | =

d (COS ).’) \/__.

~1

(xviii) fcoshxdx:sinhx+€

gx-(smhx) =coshx

1
(xv) dx=sgc"1x+C —(sec'x) =
j‘x*\bc -1 ( ) xyxt-1
_ -1
(xvi) dx =cosec 'x+C = {cosec”'x) = |
I.xwlx -1 ( ) xvx? -1 |
(xvii) Isinhxdx=c()shx+€' ~—(coshx) =sinhx W

(xix) [sech’xdx =tanhx+C

gx-(tanhx) =sech’x

(x)  [sechxtanhx dx = —sechx+C

%(sechx)=—sechxtanhx

(xxi) [cosech’xdx =—cothx+C

%(cﬂthx) = —cosech’x

(xxii) _[cos echxcothxdx = ~cosechx+C

%(cos echx ) = —cos ec hx cot hx

dx - dgo. . 1
(xxill) | ~—===sinh™ x+_ —1{sinh™ x) =
)' J‘w/1+_1:2 dx( ) V1+ x?
. dx 1 d -1 1
=cosh™ x+C —{cosh =
(mv)IJ;Z___ cosh™ x dx(co x) J;Z___l
l og——_l x>1 d 11 {I—l]= !
2" Tx+l de2 A\x+l) x%-1

Integration
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3.3 BASIC THEOREM ON INTEGRATION = .. - -

(i) The integral of product of constant and a flmchom weqaal to‘the product of the
constant and integral of the given function. i. e.-

(W (x)dx = k[ 1(z)ds, Whers ki constent ",
(ii) The integral ofsumordjffcrenccofﬁmctlons 1seqmllosumm&ﬁcmnceofthe

: '!

integrals of the functions.
HAGE A+ = J'fl(r)dx:t_{fz(x)dx-«-
[} kasile)s.. e kIn(x)szf;(x)m

&
SOLVED EXAMPLES
3% Sy
Example 1. : Evaluate I{ + 4sec? x}dx S N
bt B Aokl
_ 2 2 ] - ':.’ .
Solution : We have .[ ~———+4sec” xpdhms 1, o Sk
| —x2 ST kg
o

=2 de+ Ao ndl R, U,
F o e

N 2 i

=2sin!x +4tanx+C

i o 4 o ..{:,;‘
2, 4 R T ae; . NI o o
Example 2. : Evaluate I X .. AR
X d “ e b < l“i r
" . + --u-.__
v?* 3
Solution: We have [x +-—-}tx I 2dx+4j —dx ‘.-:..I
31

=[Pacrafda i
W1 P e ~owpdpme _'.'r

=X g+ 43‘—3—+c Lo
2+1 -3+1 o .'“r"-;\'lf"
3 : ek Rl
=-'E-—+—ix'2+'c Wi
3 2 £l L e
3 -
x* 2 -
== -—+C s
xz % v

Example 3. : Evaluste  [{(x+1)*Vir}ds



Solution : We have J{(x + 1)2\/;} dx = I(xz +2x + 1)—»/;dx

= Ixs/zdx+2_[x3/2dx+ vazdx

5/2+1 3/2+l I,/2+1 B

/+1 3 4 +1 }/+1

[/ T R

AR

=:?'—x7'/2 +£-xi +-2—-x3/2-FC
7 5 3

jl+sin2x

cos” x

Example 4. : Evaluate dx

Solution : We have

Il+sin2xdx=[[ 1 +sir.2xjdx

COSzx - 0082x COSzx

= [(sec® x + tan’ x) dx
= [ (sec? x +sec” x ~ 1) d
= [(2sec? x~1) d

=2[ (250 xdx —2) [ ax
=2tanx~2x+C

Example 5. : Evaluate jx b 1

Solution : We have
Ix+1dx Ix~2+3

=.|'[1+;-§_—2de

=jdx+3f—l—2-dx
L

=x+3log(x-2)+C

Integration
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Example 6, : Evaluate jw/ 1+ cos2x dx

Solution: We have

[V1+cosZx dx = (2005 x de
= \[i_[ cosx dx
=2sinx +C
Example 7. : Evaluate I(cos ecx +cotx)’ dr

Solution: We have

[(cosecx +cotx)” dx = I(cos ec’x +2cosecx cotx + cotzx)dx
= [(cosec® + cosec’s =1+ 2c0secxootx ) dx
= [2cosec’x dx + [ 2cosecxcotx dx [ dx
=2[cosec’x dx +2 [cosecxcotxdx - [dx
= -2cotx ~2cosecx ~x+C

Example 8. : Evaluate I(e‘ +2sinx - 3cosx ) dx

Solution: We have
f(e‘ +sinx ~cosx ydx = je‘dx+ Isinxdx—2j'cosxdx

=¢" ~cosx —-sinx+C

Example 9. : Evaluate Il 1_ dx
—sinx

Solution: We have

1 1+sinx 1+sinx
Il_sinxdx =-[(1+sinx)(1—sinx)dx dx‘[(l—-sinzx) &
_ l+sinx
‘J.coszx =

1 sinx
='[c,os:,zxdjw".coszxdx

=Iseczxdx+jsecxtanxdx

Seif-Instractional Material =tanx+secx+C



Exampie 10.: Evaluate | (5’r +e*+x° Yd

Solution : We have
j(s*+e*+x3)dx = [$*dc+ [e*dn—[x* dx

5.1’ 4 '

= +efrtC
log, S
EXERCISE 3.1
Evaluate the following integrals.
Q-1: () [ [xz --—lz-]dx (ii) [VI—sin2x dx
X

Q.2: (i) [(tanx ~ocotx) *dx (ii) JJTT%CTE

Q.3: @) [(sin% —cos%) 2y (i) [(cos ecx —cotx)’ d

Z
Q.4.: (i) I(sinx+msx)2dx (ii)f(x;;) dx
Q.5.: (i) [secx(secx +tanx)dx (i) [ (2% + 3sinx + 5 ) dx

2
Q.6.: (i) j‘[\/i —%] dx (ii) J‘[zxzf%ze*—ﬂdr
Q.7.: (i) j‘(zx-acosx+e‘)dx (ii)f(2x2+e‘)dx
4 -3sinx .
Q.8 ()-[ cos® x dx i -[1+cosx
Q.9 ()IL‘;ZZZ; (i) [Vi-cos2x dx
Q.10:0) I 1- cosxdx (“)-[ 1+smx
ANSWERS
o O i‘;+%+c @ G tanx-cosx+C
(i) (sinx—-cosx}+C (ii) 3—1-(1:+a)3/2+§2;x3’2+c

() () x-cosx+C @ @ x-S,

Integration
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(3)

(7

9

(i) —2cotx—~x+2cosec+C (i) %x7/24_6£x5/2+2a213/2+2a3xl/2+c

2

(i) tanx+secx+C ® G %——-4logx—2x+C
(ii) §x3+3003x+?x3/2+c (if) -37~x7/3+261—10gx—?.x+C
() x*-3sinx+e +C (8) (i) 4tanx-3secx+C

(ii) §x3+e‘+C () —cotx+cosecx+C

() tanx-x+C (10) (1) —cosecx—cotx+C
(i) —ﬁwsx¢10g+c (i) tanx-secx+C

3.3.1 INTEGRATION BY SUBSTITUTION (CHANGE OF VARIABLES)

When a function is such that it is difficult to find its integral directy from standard
results, then we transform the given integration to the standard form by changing the
independent variable of the integrand in to new variable and then we find the
integral of the given function.

The method of finding integral by changing the variables of infegrand into a new
variable its called integration by substitution. This method is most powerful tool for
finding the integrals.

Let the variable x of the integrand I f(x)dx is changed to a new variable 1.

x=4(1), then %:d)(z)

Wewrite *~ dr=¢'(1)-dt, then
f )= [(e(0)e'(1)-a
The method of integration by substitution is similar to the differentiation of a
function of a function.

Usually, we make a substitution for a function whose derivative also occurs in the
integrand. The following solved example illustrates this method.

Example 1: Find the following integrals.

2
L¢P N (Si“_l") o o(1+10gx)’
0 e fEr e[
Solution : (i)


http:method.of

We know that derivative of 1+ x> =3x? [Lei(1+x3) =3x2:|
o de
The we qse-ther‘substitut-ion 1+ x3 =t 50 that 3x2dx = dt.

J'.lix; dx, =J'ﬂ =logt+C

log(1+x )+C

then we use the substitution,

(i) We lmow that denvanve of sin”' x =

1-x

dx =dt

siﬁ"x=t spthat
g -. y lﬁxz

' * (.?2' "
o SR,

‘ J——-——ﬁ_._dx -t

“ ey REE l—x

- _‘ 4 —1 3
P At

¥ CEF 3

d .'.5'-;‘_ .. T4

(iii) Wehaowthat de:ivaﬁve of 1+logx = L then we use the substitution,
X

1+iogx t, so that —dx dt

£

I(—I-ﬂﬂdr It;it t +0

l»_‘_' | =(1‘+10gx) o

} 24
i T Lo

3.3.2 SOME FUNCTIONS WHICH ARE INTEGRATED BY SUBSTITUTION
3% e P23

@  Integration of a function of the form f(ax+b)

Let f (1) he a standard functxon which can be integrated by standard formulae and

j' f(t)dt -F(t}‘-l— c, themto-find the value of [f=(axtb)ax

Weput, axib:! so that - axdx—t or dx--i then
a

ff(axib)d: j'f( )dr—lF(t)w F(axib)+C

ik

Integration
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(i)  Integration of a function of the form I f (¢(x))¢'(x)dx.

In such fype of functions we put
¢(x)=t sothat [fo(x)o'(x)dx=ar

Now, if I f(£)dt canbe evatuated from standard formulated then s is changed to x and
the required integral is obtained.

(iif) Integration of a function of the form I —L)——dx,

(¢(x))
For the above functions we put
¢(x)=1¢ sothat ¢'(x)dx=adt
’n ¢'(x)ax _r
* e 0

variable ¢ into the variable x, we get the required integration.

we evaluate this integral and thep changing  the

Remark : The integration by substitution is a descriptive method of integration. This method
is also used in the integration by partial fraction, mtegrat]on by parts. So this method
can not be limited for certain fimctions.

3.3.3 SUBSTITUTION FOR SOME IMPORTANT FUNTIONS

1 1

2, 2
a’+x° Jg? 1 x?

() x=aotand isused for the funtions a® + x%,va® + x2,

and the functions of these types given in the other forms.

|

‘—___,
.’.12 -xz

(i) x=asinf orx = acos® is used for the funtions a* — x2,va? ~x?,

21 - and the functions of these types given in the other forms.
a —x
(i) x = asecd is used for the funtions x* — a*,Vx* —a?, 21 3 21 and

x“~a" yx?-g?
the functions of these types given in the other forms.
(iv) x=a—asind orx =2gsin* § is used for the funtions \/Za;c ~x%, andthe
functions of these types given in the other forms.

The fundamental concept of this substitution is to change the function in such form
which can be integrated easily.



3.3.4 INTEGRATION OF tanx, cotx, secx and cosec Xx.

() tanx="2%
COsX
o framxdx =[ =% puting cosx =1, —sinxdy = dr
CosXx

Itanxdx— H—-—dr- :‘i{—
cosX t

dt

=—logt =logcosx

!
= log——
cosX

= logsecx + C
Imnxdr =logsecx+C
@) [cotrds = J’c"” Putting sinx = ¢, cosxdx = dt
¢ oot =[x [ £
t
=logsinx+C
" Icotxdx =logsinx +C
secx (secx + tanx)

(it Iwcxdx='[ secx + tanx %,

__ISGCZX"FWCI"{-WDI

dx Putting secx + tanx = ¢
secx + tanx

(wcxtanx+ secz)dx = dt

dt
J'secxdx = IT =log, ¢
= logsinx + C
jcotxdx =logsinx + C
= log(secx + ta.nx) +C

or, = logtan[;— + %J +C {on simplification)

‘. Iwcxdx =log (secx + tanx )+ C

Integraition
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= logtml[-"i +-£]’+ C .
LI

cosecx(cosecx + eotx) &

(i) jcosecxdx = J'

cosecx +coty

2
cosec“x +cosecx xcotx ]
=I dx  Putting cosecx +cotx =1,
cosecx +cotx -

(—cos ecxcotx —cosec x ) dx = dt

" {cosec” x +cosxcotx)dx = dt
dat

4
=-log(cosecx + éptx_)'= log(cosecx + cotx)™
jcos ecxdx = log{cosecx —.ootx) +C
=log mn% +C o (on éimpliﬁcation)

jcosecxdx = log(cosecx -ootx)+ c -

or, =logtan§+C
cosecx{cosecx —cotx ‘
Alternatively = | ( )=a:x_
cosecx —Ccotx
2 - ’
:Jcosec X 7 C0sTXCOLY _ i Putting cosecx —cotx = ¢
cosecx —cotx - )
dt L Vv 2
=-[T ( .cosecxcotx —~cosec”x )dx = dt
=logt+c

= log{cosec—cot) + ¢ o

=log#{cosec—cot) + ¢ o

x
=logtan—+ ¢
S

3.3.5 INTEGRATION OF sin? x, cos® x, tan?x and cot?x.

| —cos2x

(0 J'sinzxdx=j -

dx = %Idx —%Icos‘ix,



=lx~}-ICOSZI
2 2

Now for %Icosbc putting 2x =¢, sothat2dx =d, dx =~‘—;£

_[cost = loge(cosecx +cotx)+C cosec’ x —cosxcotx = dt

=—I%:%Icost-dt=8i—;!=-sili2—2£
ot L2
h 272 2
(ii) Icoszxﬂ:I!jE;zidx:%Idx+%Icoslxdx,
J'coszxdx=%-x+%j’%§+C
(i) [tan” xdv = f(sec’ x-1) s,
= [sec® xdx - [ ax
=tanx~x+C

». ftan® xdx = tanx—x +C
() [eot” xdx = [(cosec’x —1) dx,
= [(cosec’x~1) ax
= [cosec’x dx - [ dx

=—cotx —x+C

J-cotzxdx =-—cotx—x+C

3.3.6 INTEGRATION OF sin® x, cos? x, tan® x and cot® x.

3sinx —sin3x
4
3¢, 1r.
=ﬂsmxdx-zjm3xdx

®  [sin®xdr=]

_ 1 .
= ——3005x + —cos3x+ C

Isin3 xdx = icos3x —Ecosx +C
12 4

dx, ( sin3x = 3sinx —4sin’ x)

Integration
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Second Method :
IsinS xdx = J'sin2 sinxdx = I(l —cos? x ) sinxdx

=I(1_¢2)d¢ Putting cosx = ¢,
—sindx = dt
=_[dt—jtz dt
=—f+ i+ C
3
Jsin3 xdx =—coSx + M +C
3

cosdx 3cosx

12 4

We see that the integration of sin® x from the different method are and

3l

% These two integrals are same but written in different forms.

—COSX —
(ii) Jcosa xdx, -+ cos3x =4cos’ x -3cosx
3 3cosx + cos3x
voeos X = —/ —————
4
[cos? xax = Iko_ﬂzﬂs_-’zdr
3 1
= —jcosxdx + —Icos3xdx
4 4
= g’-sinx + 1sin3x +C
4 3
.[0053 xdx = m]l;x + %sinx +C
Alternately,
Jcos3 xdx = cos? xcosxdx
=I(1—sin2x cosx dx Putting sinx = ¢,
cosxdx = dt,

=I(1—t2)dz

=Idt—It2dt




3
=t-t—-+C
3

N3
=sinx—£s—mj-2—+c

Icos3xdx=sinx—él-sin3x+c

(lii) ]tan3 xdx=jtan2x-tanxdx
= [ (sec” x -1) tanx ds
= J'(s.ec2 xtanxdx)dx - [tanxdx
= [sec? x tanxdx — log secx
Now, for [sec x tanxd Putting tanx = {
cosec’ xdx = dt
. [sec? xtands = [sds

_ _(tanx)’
T2 2
2 2
Itan3 =—t—=ﬂ-§~logsecx+c
2 2

@iv) _[cot3 xdx = jcotx cot’xdx = Icotx(cosecz - l)dx
= jcotxcosecz xdx — Icotx -dx
= Icotxcosecz xdx —logsindx
Now, for Jcotxcos ec’x dx Putting cotx = ¢
cosecxdx = dt

Icotxoos ec xdx = —I tdt

__ 2 _Heorxn)’
T2 2
) I 3 cot? x .
S |eot” xdx =— -logsinx +C

Integration
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SOLVED EXAMPLES

1. Evaluate the following integrals.

. xtan~! x* . 3,2 sinx
(i) ITxrdx (i) [oos’xsin®xdx  Gil) | (e )
X —x
(iv) I;;Z_xdx () [sinxsin(cosx)ar  (vi)  [e™Fsec’xdx
COSx —Ssinx 1
(v I cosx+smxdx (vit) I 1+ tanx
sin{tan! x
J‘cotx logsinx (x) J'——(——-z—) dx
1+x
Solutions :
-1.2
o [ ra Putting x? =1, 2xdx = dt
1+x
xdx=ldt
2
Ixta.n x J-
1+ x4 1+ ¢
Now, for
~1
J'm ztdt Putting tan™ f=1,
1+¢
1
1+¢
tan~' ¢
dt = | ud
J-th I
o ()
T2 2
(122
N 2

J’X

tan 1x2dx=(tan 'x")z +C
1+x* 2

(ii) J'cos3 xsin® xdx = Icosxcosz xsin’ x dx




=[Pdr-[rar
3 .
=_t_.._£_.+c
3 5.
.1 .k
LSy snx
3 §..
3 5
Icos xsinzxdx—smj_‘ sms _
sinx
jii dx
O e
‘Putting x+a=t
x=t-a
dx = dt
el
sm(x+a) -
Ismtcosa-—costmnadt
. sint .
jsmtcccsaﬁhI j-cost :
=cosa_[dt—mnajcottdt
= cosa(t) ~sinalogsins+ C,
=(x + a)cosa~sing-logsin(x + a ) + C
=xc0sx + acosa —sinalogsin(x + a )+ C,
sinx NP
J' : = xcosx —sing-logsin(x+a )+ C
sin(x + a)
Where C =acosa+ C,
I dx =xcosx —sina-logsin(x+a)+C
sm(x+ a)
(iv) j:xzz:xdx Putting e +e™”

= Icosx(l —ginzx)@z xdx Putting sinx =1,

.. Cosxdx = dt

Icos’ xsin? xdx = I(l - tz)izdt

=t

Integration
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(eJr + e—‘)dx =dt

e -e’  cdt
h Iex+e“’dx_'[7

=logt+C
= log(e‘ + e"‘) +C

Jex—e—xdx=log e"+e")+C

e*+e”
v) Isi.nxsin(cosx)dx Putting cosx=t¢
—sinxdx = dt
sinx dx = —dt

[sinxsin(cosx)dx = ~{sinzdt

=cost+C
=cos(cosx) +C

Jsinxsin(cosx)dx =cos(cosx)+C

(vi) Iem‘ sec’ xdx Putting tanx =1

J'e‘““ sec’ xdx = Ie‘dt
= +C
=™ +C

J‘e@“’seczxdx =e™* 4+

(vii) I___cosx _s%nx dx Putting cosx+sinx =1
cosx +Sinx
(—sinx + cosx) dx = dt
or (cosx—sinx)dx =dt
J-cosx—m‘nxdx =.|-ﬂ
COSX +8Inx !
=logt+C
=log(cosx +sinx)+C

Self-Instructional Material
2



IM dx = log(cosx +sinx) + C

COSX + Sinx

(viiD I1+ tanx

1 1
'[1+tanxdx="‘1+§£{dx
COSX

I COsSx
COSX + sinx

I 2cosx
COSX + sinx

dx

_ Icosx+ SinX + COSX —SinX
COsx + sinx

—Idx _j-cosx smx

COSX + smx
For Imdx Putting  cosx +sinx =¢{
COsX + sinx
(—sinx +cosx)dx =u
or (cosx—sinx)dx =dt
J«cosx —s:lnx dy = J-é
cosx +sinx
=logt
= log(cosx+ sinx)
i I ! dx=1x+log(cosx+sinx)+C
1+ tanx 2
(ix) Icotxlogsinxdx Putting logsinx = ¢
fl-—cosxdx =dt
sinx

or cotxdx =dt
jcotxlogsinxdx = Itdz

2
=-t—-+C
2

_ (logsin:c)2
T2

+C

Integration
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20

N2
(logsinx) .

Icotx logsinx dx = C

() Iim_(ﬂ dr

. -1
> Putting tan™ x =t

1+x
1
5 dx = dt
1+x
gsin{tan™' x
I—(—?—)dx =.[Slﬂfdf
1+x
=—cost+ C
= —cos(tan‘1 x) +C
Sirl(tan'l x) ‘
) L -1
J. J.Tx'z—dx— OOS(taD x)+C
Evaluate the following integrals.
() [sindroosdxdr (i) [tan’xsec® xdx (i) 2vsin(x* +1)
(iv) sin®(2x+5) (V) sin’(2r+1) (vi) cos®2x
(vii) sin®x (vil) tan'x (iX) cos2rcosdxcosbr (x) 108X
, I+ cosx

Solutions ;

@) [sin4xcos3xdx =—;—I{sin(4x+ 3x) +sin(4x —3x)} d
=% [[{sin7x + sin(~x)} d
=%I{sin7x—sinx}dx

- [sin4xcos3xds = %Isinhdx -3 Jsinxds
| =~ Lcosuae+ %cosx+C

) 1 |
Is:n4xcos3x =——co87x + —cosx+C
14 2

(1i) Itanz’ xsec® xdx = _[tanchx(ta.nz xsec x ) dx



Integration

=_[(s.ec2 x) (sec4 x)secxtanxdx  Puttingsecx =¢
ssecxtanx dx = dt

=_|'(t2 —l)t‘dt

=I(t6 ~t“) dt

= J' tﬁdt*jt“dt

:wix_mix+c
Imn3xsecsxdx~seix—se(;5x+c
(i) jzxsin(xzn)dx Puttingx? +1= ¢
c2xdx=dt
lesin(x2+1)dx=_[sintdt
=-—cost+C
_=—cos(x2+1)+C
J'szil:l(x2 +1)dr = -cos(xz +1)+ C
@)  [sin®(2c+5)dx | cos2x =1-2gin x
’ sinzx—l_cosx
. ==

Isin2(2x+5)dx =Il—coszg2x+5)dr

=%j’dx—%[cos(4x+10)dx

=251 foos(ax+ 10)x
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For]’cos(4x+10)¢x * Putting 4x +10=¢

4dx = dt

dt:.l.dt
4

fcos(4x +10)dx = %Icostdt
=—sin¢
4
= %sint(4x + 10)
o Join? (204 5)ax =2 x - csin(4x+10) +C

or Isin2(2x+5)dx =%x—%sin2(2x+5)+c

) [sin}(2x+1)dx

jsin3(2x+1)dx =J'35i"(2"+‘)-5iﬂ3(2x+l)dx

4
3¢, l¢.
31.[5'“(2”1)‘2.[3‘“(6“3)‘1" .+ sin Ir=3sinx-4sin’ x
. 3 __3sinx-sin 3x
8in x:.._4—.
For
[sin(2x +1)ax Putting 2x +1 =1
C 3¢l 3¢, _
. Zfsm(ZxH)dx-—s—Isuntdt 2dx = d
=—§cost dx=ldt
g 2
=—%cost(2x+1)+(;’
And for  [sin(6x +3)dx Putting 6x +3=u
6dx=du
) dx=ldu
6

%J‘Sin(ﬁx-.l-3)dx = %Im“d“

= ——l-cosu+ C,
24



Integration

1
=—a—cos(6x+3)+ C,
Isin3(2x+l)dx=—%cos(2x+l)+cl —Elicos(6x+3)+c2
=——%cos(2x+l)—§;cos(6x+3)+€
3 1
=—§cos(2x+1)—-2—4cos3(2x+l)+c
Where C1 +C2 =C

J‘s:in3 (2x+1)dx = -—%cos(Zx +1)- —21:cos3(2x +1)+C

o) foos* 2xdr = [(cos? 2x) dr

2 2

=[[l+cos4x] e .+ cogd g = LHCOS” X

. 2 2
=J-(Hccos2 4x+2c:os4x}dx

P
=L far+ 2 foosax + L[ 11O 4,
’ 4 4 4 2

=ljdr+ }—Icos4xdx+—l-j1+c°sgx-dx_

4 2 4 2

- %J'dx + %J'cos4xdx+ %IcosSx-dx

=§—x+lsin4x+ —lgsin8x+C

8§ B 8x
sm4x+sm8x+c
8 64

3
=—x+
8
4 3 1. |
Icos 2x=—x+~sindx + —sin8x + C
8 64

o fointxar = [(sin x " dx - sin xz(l—c;)sh)

- J‘(l"‘;’szx]zdx

=L1(14 cos? 26 ~2c0s2¢) dx
4'[( ) SelfInstructional Material
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= %J'dx—%fcosh + -41-1—_|'r:,os2 2x dx

1+ cosdx
2

dx

=%Idx-—%jcos2r+%]
= %Idx—%fcoslx+ -é ]‘dx+%jcos4xdx

= -Z-J‘dx—%'[cosbcdx+ % IGOS4de

=3 Lanr s sintsindx+C
8 4 32

- [sin® xdx =3 anovs Lsnax+c
S 2

(vii) {tan* xdx = [ tan® xtan® xdx
=Itan2x(sec2x—-l)dx
= fsec? xtan” xdx— [tan’ x dx
= [sec? xtan® x dx - [ (sec? x 1) dx
= [sec? xtan® xdx — [sec® xdx + [ dx
Now for, Isecz xtan® xdx Putting tanx = ¢

- sectxdx = dt

Thus __[sec2 xtan? xdx = t2dt
- t%
- 3%

J‘tan"xdx=%tan3x—-tanx+x+c

1
_[tan‘xdx =x-—tanx+§tan3x+C

(ix) Icos?.xcos4xcos6x = —;—I(costix + 0052x )cosbxdx



( cos Acos B = —?lz[cos.(A +B)+cos(4 _B)]]

= %J'cos2 6xdx + %Icostcoszdx

=1I(1+coslzx_)dx+_l_f(cos8x+cos4x)
2 2 2 2

=ljdx+lcoslzxdx +l]‘cosf;xdx+ 1 j cos4xdx
4 4 4 4

=%+ L gintor+ L ingx+ Lsindx + C
4 48 32 16

J'coszxoos4xoos6x=l x4+ Lsinl2x+ Lsin8e + Lsindx |+ C
4" 12 8 4

l-cosx , 2sin” x/2 3 ~ _
(x) Il+cosxdx—'[2coszx/2 - cos2x =2cos’ x —1
=1-2sin’x
=Iwn2x/2dx
=J‘(sec2x/2—1)dx
= [sec” x/2dx - [ax
=I2tan§—x+c
For Iseczgdr Puttingiz‘-'::
dx = 2dt

_[s’,ec2 -;de = 2J.sec.2tdt
=2tant

=2tan>
2

1-e0sx e —2tanX —x+C
1+cosx 2

Integration
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EXERCISE 3.2
Integrate the following functions :
3 2 )
. X e x | sinx
B KR¢ i) ————— i) ——m (i
Q12 @ 1+x° ()(2+3x3)3 (@) (x +xlogx) v 1+cosx
x  2x
- ) 1 .
V) G () ——— x>0 i) ——;
e +e x(logx) 9+ 3x
. . v 1
A b +b
Q () sin{ax + b)cos(ax + b) (i) o o g
i 1 +1
) S5y (rDGrled) o
sin(x —a) sin’ x
Q.3.: ! M Y R L Q.5:
cos? x(1-tanx) Sinxcosx 1—tanx
3. “1_4
Q.6: — 1 Q.7.: ! Q. X Soxtam x
1+cosx 1 —cosx 1+x8
3 4 4 [T 2 e
Q.. X X Q.10 =8 Jx sec” Jx Q.11,; 2¢osx—3sinx
1+ x8 J; §cosx + 4sinx
Q.12.: sin2xcos2x Q.13.; % Q.14 —
. 1+sinx 1 +cosx
-1 - sinx
15.: 16.: .17,
Q. \f Q e"+1 Q 1+cos® x
sm"«/; 1
, 19 —— .20 —4M8M—
,/ Q J;w/l-—x Q sinx + cosx
cosXx e e* —sinx
.21 ———— . 22.: Q. 23.:
Q cos(x ~b) ¢ 1+ ¥ e* +cosx
e*(1
Q.24.: J‘ Q.25.: 11 Q.26 £L+x)
xZ +1 e -1 cos (xe)
2. -1.3
Q.27.: {Lﬂ% Q. 28.: sin~'(cosx) Q.29.: cos”'(sinx) Q.30.: cos ad
1+x : sinx
ANSWERS
% (4ea3))
4 2
oW (4x+3)2 (4x+3) iC @ - 1 .,
40 8 3
18(2+3x )



+C

1)  log{l+logx}+C iv) lo
(iii)  log(1+logx) @) log; —

1—n
(v) -;-log e + e‘u) +C (vi) gl%g—i}__ +C (vi) -é-log(4+ 3x2) +C

" Ea

(ili) xcosa+sinalog(x-a)+C (iv) %(x+logx)3+c (v)-%coseczx+C

@ 0 —::Ecos(Za.x+wcx2b)+C (i)

[P x 1 )
() (1 tan) C (4) 2 tanx+C (5) Epilog(wsx—mx)-"c
(6) —cotx+cosecx+C (7 —cotx—cosecx+C (8) --cos(tan-l “)+c

®) %(tan"x)2+C (10) -S-(tan JE) +C(11) %log(3oosx+2sin)+C
12) %(sin?.x)% +C (13) log(i+sinx)+C (14) %x——;—log(cosx+sinx)+c
(15 2/i+sinx+C (16) log e‘+e**)+c a7  —tan'(cosx)+C

(18) 2V1+sin’x +C 19) (sin-‘\/})2+c

(20) :/%'m[%*'%}'c or :/li—log(cosec(xﬂrﬂ))—cot(x+n/4)+C
(21) xcosb+sinb10goos(x—b)+C (22) tan“l(e")+‘C 23) log(e"+cosx +C

3

(24) "T —x+tan'x+C @29 log(l -€")+C @26 tan(xe)+C

1 .3 n xz n x2
27) —{tan +C 28) —x+—+C —x-—+C
(7)6( <) (28) Fx++C orgx-2

2

(29 %x—fz—w (30) Iog(sinx)+-}8—si1}3x—gsinsx+%sin4x—23in2x

3.4 SOME SPECIAL INTEGRALS

The following formulae of integrals can be directly applied for integrating various
functions.

l x~a
1 =—1 ——l+C
() Ixz—az 2a 0g{x+¢:

Integration
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dx 1 a+x
2 =-—1 +C
@) Jaz—xz 2a g’a-—x

dx 1 -1 X
3 =—tan  ~+C
) '[x2+a2 a . a
(4) j -"‘+c

=logx+vVxZ+a? +C or smh?'Z4C
a

(5) jm

..1.1’ li
(6)Im —tan +Corcosha
dx 1 _1x
N [—E—=—sec'i+cC
ch xt-g%> a a
)
(8) J‘Ja -x dx-——\/a ~x? 2sm X ¢
a

Now we shall prove the above results :

(1) '[x2 }-az - (x -—a)l(x + a)

ale-gera)

=512{(x1a) i (xia)}

S R S S . R ..
',[xz__az 2:1{J‘(x—a) '[(x+a)}
= Zia log[lx - d - logix+ d] + C

"_--l*].ogx_a'l'c
2a |x+a
(2) Wehave
11
az_xz 2 _ g2
dx
,[ & xz‘ Ix 2_ 2



3)

“@

or =—log

From result (1) we have,

a
+C
x+a

=——1

dx 1
J‘c::2 -x*  2a

1 xX+a

+C

2a xX—a

% +4?

=—tan" =+ C

J dx
Vat +x?

asecftan0do

Putting x = asec®

dx = asecOtan0d 0

J sl
Vol +x* Vol sec?0-0a?

I asethanB

et o1

- Mdg
¢ 140

= J‘secede
= log]secﬁ + tan9| + Cl

1 2
Iog|~ it +C;

_log}x+\/z_c——al+C

Where C =C, -loga

Integration
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Putting

x = gsin®

dx = acos6d0

acosbd 0

acosd® J-

I\/— Jlfzasme a

Iacosﬁdﬁ B J-a¢¢sﬂd9

L afoosto | 4ens
=J‘_d9

=0+C

X
=sin"'Z+C
a

dx
© Jme
asec’0do

Ifﬂz —IJa ? tan’0 + a”

] —sin?0

x =qtanb
dx = asec? 040

Putting

[ asec’0d0 J.aseclede

) aJtanZBH

_ usect0d0
#8¢c0

= jsece de

= loglkecO + tan6| + C,

‘\J12+02 X

a a

= log x+Vx? + g ‘+C

=log +C,

O |
¢ dv ¢ gset0tan6de
B Im—'[a#w\/azsecze-—az
{049

avjsec?0 -1

] aszze

Putting

Where C = a—loga

x=asecO

dx = qsec0tan0d0



3.5

tan9d0
! Ly

tan@d 6
=

=—se¢c —+C
a a

® I a’-xtdx Putting % = asing
dx = acostd 0

Ir—xzdx I a? - a*sin 9 acosodo
=Ia2 1-sin? 0 cosBd6

=g’ j Jsin? 9 -cos6d0

= azj.cos?‘ 0de

=a2j“°°“’29d9 -+ c0s20 = 2c0s2 0 -1

= 522-[[ do +jcoszede]

2
= E—[ +__ﬁ28m9200j§_:|+ C

2 a
=X Ja?-x? +9-2— in” x +C
2 a
INTEGRATION BY PARTS

This method of integration is more useful for integration of products of two functions.
Any one of which may be algebraic, exponential, logarithmic, trigonometric function.

Integratior.
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If u and v be two differential functions of independent variable x, then by product rule
of differentiation of two functions, we have —

d dv  du
—(w)=u—+v—
dx de dx

Integrating both sides with respect to x, we get,

uv=_[u%-dx+]lv%dx

Iu%-dx:w—-fv%dx (D)
Let u=f(x); and —=g(x) then
%=f'(x) and v=_|.g(x)dx

Using above expression (1) can be rewritten as —
[1(x)g(x)ax = £(x)a(x)ax-[[ (Je(x)ax )1 (x) s
o0 108 ()ds= £ () e ()~ [[1(x) [

Now, taking fand g separately first and second function, then the above formulae may

be stated as :

The integral of product of two functions
= The first function x integral of second
— integral of differential coefficient of the first .
function x integral of second function.

3.5.1 SELECTION OF FIRST AND SECOND FUNCTION

(i)

We take the integral, whose integral is known as second function. If the integral of
both functions are known then we must be more careful for the selection of first and
second function.

If out of two functions one contains the integral power of the variable x, and other
function is either trigonometric or exponential, then we take the function involving
integral power of x as first and other as second function.

For example in Ix:"' sinx dx, wetake x? as first function and sin x as second where as
in jx3e‘ dx, we take x° as first function and & as second function.
If one of the fuaction contains integral power of x and other is either logarithmic or

inverse circular function, then in this case logarithmic or inverse circular function is
taken as first function and the function involving integral powre of x as second



(i)

()

1)

function, For example —in Ix" logx dx, logx is taken as first function as x* as second.
Similarly, in Ix3 sin"'xdx, sin"'x is taken as first function and x> as second

function.

Sometimes, it becomes difficult to integrate a single function. So we take unity (i. e. 1)
as second function. For example -we can not evaluate j logxdx, so we take 1 as

second function and write the integral as J' logx-1dx, similarly, to cvall.late_[sin‘l xdx
we take sin”'x as first function and 1 as second furiction and we write Isin'l x-1-dx.

If out of the two functions one is trigonometric and other is exponential then to
integrate such functions we choose first or second function according to our
convenience. For example in J' ¢* -sinx, we can take any of the functions e* or sinx as

first or second function.

Sometimes, after certain stage, the original integral occurs, in the process of
integration, then we transfer it to the left hand side.

SOLVED EXAMPLES
[+ sinxdx
Let  [=[x’snxds
Taking x? as first function and sinx as second function.
Using integration by parts, we get,
I=[x*sords =x2.[[sinxdx]—[j%x2jsinxdx}dx
or I= Ixz sinx dx = —x° cosx —-_[[Zr(*cosx)]dx
or Izszsinxdx=-x2cosx +2Ixcosxdx (1)
Let [ =[xcosxdx
Taking x as first function and sin x as second, and integrating by parts we get,
1, =xfeoszds - [%(x)j[cosxdx]dx
= x(sinx) - 1 -sinxdx

= —xginx +cosx+C
=—xcosx +sinx + C,

Putting two values in (1) we get,

Integration
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@)

@

I =—x?cosx +2xsinx + 2c08x + C
Ixze’dx

Let I= sze‘dx

Taking x? as first fanction and ¢* 2s second, and integrating by parts we get,

I =x2[e*dx—j[%x2je*dx]dx
=xi _sz-e*dx
| =x2e —Z[Jc'eJr —I%(I)-Je’dx}dx
=z -2x-& —2J‘e*dx

=x?-2xe -2 +C

Q) sz logx dx

Let [ =Jx2 logx

Taking og x as first function and x as second, and integrating by parts we
get,

X 1 x
=logxr——-|——dx
ogx3 x 3
—-ﬁlo x—ll[xzdx

3 ¢ 3
3 3
=£—logx—-— —+C
3
H

= é-xs log.vc—%x3 +C

Ixz tan™" xdx
Let I= Ixz tan ! xdx

Taking tan™ x as first functionand x? as second, and integrating by parts we

get,



I=tan” x[xdx - J‘{ tan™" x[x?dx ] dx

3
=lx3 1:an_lx—l X
3 371+x2

y
=—1-Jr3tan"lx-al x- xz}i\'
3 3\ 1+x

a1
=3% lx—gLdex—Il:xz dx]

1, 1[x* 1 )
=-x tanx—— ———-2—Iog(l+x )]+C

3 3| 2

-

1y 45 1, 1. 2
-3-1 tan x—gx +E 10g(1+x )+C

5 j logxdx
Let I=Ilogxdx

We can not evaluate the given integral directly, so, we rewrite it as :
I= I(logx ‘1) dx. Wehave taken 1 as the second function and by applying
integration by parts, we get

= 1ong1-dx "I[Ei' logxfidedx
=logx-m—J%-xdx

=logx—x+C
I=x(logx-1)+C

©) J‘sin"xdx
Let 1=jsin“xdx

Rewriting above integral and using integration by part taking 1 as second function
we get,
1=[(sin™ x-1) dx

~sin 1= | L™ a1

Integration
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1

=xsin"lx—f dx
1-x?
=xsin - V1-x% +C
(M [esinxd
Let I=Iexsinxdx

Taking ¢” as first and sin x as second function and applying integration by parts we
get,

1=e"jsinxdx~j[%e‘jsmx-dx]dx
=¢*(-cosx) —Ie"(—cosx)dx

= —cosx e + J‘e‘ cosx dx

=—e” cosx+ e“Icosx-— I[—i e’j(dx)dx]dx
dx
=~e* cosx + e‘sinx—-j'e"sinxdx
=~¢"cosx+ e sinx -/
oo I+ I =-e"cosx+e sinx +C,
2] =—¢&"cosx+e*sinx + C;

or I =¢*(sinx -cosx)+C
®) je‘”‘ sinbx -dx

Let I= j e™ sinbx -dx

Taking e* as first and sin bx as second function and applying integration by parts
we get,

1= [sinbx -—"‘[-gx-e“_[sinbx-dx]dr
= en(~0(;sbx] —J.ae“x(,a;fbx}dx

oshxe™ a
= LO8PxE ZIe“’cosbxdx

b
e”coshx a
==t =], {1
b b M)



Where, I = je“ cosbx dx

Taking ™ as firstand cos bx as second function in /; and integration by parts
we get,

I = & [ cos bxdx - | [de-e‘ | (cosbxdx)dx]dx

. Sinbx o [ smbx
=g 5 —Iae —( 5 ]dx

=° smbx 2. ae” sinbxdx
b b

e “sinbx a

Putting /, in (i) from above, we get

e“coshx alesinbx a
J=- +— ——-I
b b b b
ax 2
=L cObe-F—a—e“sinbx—-— I
b b2
2 ax
or I+ra—2—-1=_,e__€9.8_b£ .._‘.1_. ‘Hs]nbx
b B2
2 2 ax ’
b +a g=_ COSbI+—a—e‘”‘sinbx
b b b?
ax

e
Hence, I=——————{asinbx —bcosbx )+ C
(a2 + bz) ( )

’ ax
= J'e“" sin bx dx =2Lb3{asinbx—bcosbx)+ C
a+

Similarly. J'e cosbx dx = (acosbx - bsinbx) + C
(" +57)

® jsec’ x-dx
Let I= Isec3 X dx

Taking secx as firstand sec’ x as second function and applying integration by
parts we get,

Integration



I =scex[sec” xds —Ili-;—xsecx‘[seczxdx]dx
=secx tanx - [secx tanxtanx dx
=secx-tanx — [seox tan® x d
= secx - tanx ~ [secx (sec” x ~1) dx
=secx-tanx — [secx-sec” xd + [secx dx
=secx-tanx -1 + secx dx
or 21 =secx -tanx + log(secx + tanx ) + C

I = %secx-tanx +-21-10g(secx +_tanx) +C

or J‘sec3 xdx = %secxtanx + %log(secx+ tanx)+ C
(10) Jx—smx_dx
—-CoSx
Let 1=jx'sm" dx
1-cosx
=J.x—25inxzcos%
. 2 x
2sin 5

= %Ixcosecz xzdr—Icotxzdx

= %[x -(~2cot’/2) —Il -(—ZCot%) dx] - Jcot% dx
= —xcot% + IWt%dX‘ —J‘W%ﬁ

dx = —xcot=+C
2




(12)

- (13)

_ (x+1 l)e

‘l. (1+x)

(x+1)e e’ .
I(l+x) I(1+x)2 &

e e
=I(1+x)2 dx'f(m)z “

S N A P P I paams
ol e

_ e ______ul_weJr N :
(1+x) I[ (1+x)° de I(1+x)2

e 1 ¢ 4
=(1+I)+‘[(l+x)2 exdx—f(nx)z

+C

__ &
(1+x)*
[ (sinx +cosx)-dx
Let I=[e*(sinx+cosx) dx
= [ ¢ sinxdr+ [ cosxdx
= [¢"sinxdx + € sinx ~ [ " sinxdx

=¢'sinx+C
& {e*(sinx + cosx)-dx = " sinx + C

Ie’(tan'lx+ ! 2Jvdfx
1+x

1
dx
1+x2J

—jam x-dx+ €

Let I= J'e"(t::m'l x+

-dx

1+Jc2

=Ie’tan_1x-dx+e tan~ x—-[e‘ttan“lx-dx

=e*tan'x+C

Integration


http:JeX(sinx+cosx).dx
http:JC(sinx+cosx).dx
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1 1, 1
=;-ex+Ix—2e -dx—Ie‘;—;-dx

e
=—+C
X

s Je’[1+8inx]-dx
1+ cosx

Let 1=J'e‘[“sm").dx

1+ cosx

—I [ sinx :|dx
1+ cosx 1+COSx

=_[e“ 1 +I x sinx -dx
l+cosx 1+ cosx

=2 e xptany] -3 v+ [ an3y

=e’t§n%+c

1+ sinx
s |er dx =e*2tanX/ + C
'I. [l +00st A

-dx

as [—

1+cosx

*  dx

Let I=
J‘l-i-cos.wc



=I,__i___.dx

2cos2’/2
=%Ixsec2 12 dx
= %[x-Ztan% —II-Z@%k]
=xtan> —210gsec£+ C
2 2

x x x a
-dx=xtan5-—2logseci+c 1-x*

B Il+cosx

amn
o (1-+ )/2
Puttlng X =Sln9
dx =cos0d0

6-cos0d0 A

Let I= .
I cos® 049

=J‘e-éeczede=eme-j1-mede
=0-tan0 - logsecO + C

X 1
—_—-log- ==+ C
V-2 V1-x?

_ox 1 )
= l—bxzsm x+210g(1 x)+C

ij_sm fx+- log(l x)+C

=sin_lx.

(1 * )/2
EXERCISE 5.1

Evaluate the following integrals ;.
Q.1: xZsinx Q.2.: tan'x Q.3.: xsindx Q.4: esinx

Q.5.: (x2+1)logx Q.6.: (sin-‘x)2 Q.7.;(i‘%3ﬂfi Q.8: st

(x 1)3 (1+x2)
1-x? e&cos x i 1
.9, sin”! 10 cos” —— | Q.11 L12.: -
Q a+x Q [l+x2J Q Jx Q logx (logx)z
log(1 -1
Q1 — X Q.14 log(log%) o 16 esinxcosr Q.16 -EE-“J;E
+ sinx X (sz)

Integration
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—_— -1 -
xle* _xcos'x i e*(1-sinx)

A7 — Q.18.: .19, ——— . 20.:
2 (x+2)2 @ Jl-x? ¢ (1+x2)3v2 2 (1-cosx)

2
Q.21.; 13%-‘ Q.22.: e(“? Q.23.:e"{1+ l—xzsin_lx}wfl*xz
x (l+x)

Q. 25.: (2::2 + 1)e"

' e (x2 +3x+3)

.24
? (x +2)3

ANSWERS

() —x2-cosx+2xsinx +2cosx + C @) xtan'lx—%log(l+x2)+c

x

3 - —%cos3x+é—sin3x+c @) %(2sinx—cosx)+C
3 3 3
(5) [%+x]logx-—x—9--—x+C {6) x(sin_]x) +201-x?sin'x-2x+C
e _ _
%) (x_1)2+c @) zmn‘x-log(1+x2)+c ©) (a+x)tan™ E—J&Jrc
(10) 2ctan” x-log(1+2?)+C (1) & (cosx +sindx)+C (12) ——+c

logx
(13) xtanx—logsecx — xsecx + log(secx + tanx) + C

(14) logx[log(logx)-1]+C (15) %(sinlx—Zcost)+C

x—tan JC+C 17 (xﬂz)e‘+C (18) {cos"xwll—x2+x]+c

(16)
Vi+x? (x+2)
(19) emmi ___ M¥X @0) -ecot=+C
(1+m )\31+x 2

. {4 + 5 logx] '
Q) ————=+C (22) e(x-1){x+)+C  (@3) &sin'x+C
X

@4 F(x+1)(x+2)+C @) xF +C

3.6 INTEGRATION BY PARTIAL FRACTION

If a fraction is in the form of an improper fraction or composite fraction then to find
the integration of such functions we resolve then into proper fraction and partial
fraction. Now we integrate each fraction differently and find the anebrmc sum to get
the integral of the given function.



This method is used in finding the integration of rational algebraic fractions as well as
the integration of product of some trigonometrical functions.

SOLVED EXAMPLES

1. Evaluate I—»L
) (x + 1)(x + 2)
To integrate the above function, we have to breack it into partial fractions,
A4 B

Ge)(+2) (4D (x+2)

Where A and B are real numbers to be determined. These real numbers can be
determined in many ways. Here, we shall discuss two methods only.

Method - 1. (Comapring the Coefficient of like Terms)

Wehave, - — =4 , B _ (1)

(x+D)(x+2) (x+1) (x+2)
or x=A(x+2)+B(x+1)
x=(A+B)x+24+B . 2)
Comparing the coefficient of x and the constant terms we get —
A+B=1
24+ B=0
Solving these equations, we get 4 =-1, B=2
Method - 2. (Choosing the value of x)
Choosing x=0 and x=1,in(2), we get
24+B=0 and 34A+2B=1
Solving these equations we get, 4 =-1, B=2
.. the integrand is given by
1 2

Gr)xi2)  (x+) (x+2)
"‘f(m)(ﬂz) f(m) I(Hz)

=—log(x +1)+2log(x +2)+C

(x+2)
(x+1)

=log

Integrat,
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x2+1

(.1:2 +5x+ 6)

x? +1

(x2 +5x+6)

divide the numerator by the denominator,

2. Evaluate I

Here, the integrand

x+1 1 S5x+5

(x2+5x+6) x*+5c+6

Sx+5

(x+2)(x+3)
5x+5 _ A N B
(x+2) (x+3) x+2 x+3
Sx+5=A(x+3)+B(x+2)
5x+5=(A+B)x+(3A+2B)
Equating the coefficient of x and constant we get,
A+B=5
34+2B=5
Solving these equation we get,
A=-5 B=10
5x+5 5 10
(x+2)(x+3)_‘—x+2+x+3

I(xi;is) f“"“[f[i%*%}’“]

—jdx+sj—dx ~10 m—dx

Let,

=x+510g(x+2)—-1010g(x+3)+C

3. Evaluate I

(x +1) (x+1)

Here, the itegrand is a proper fraction, so we decompose it into partial fraction. Now,

x A Bx+C
= -+ 3
(+1) (x+1) x+1 X7+

x=A x2+1)+(er+7C) (x+1)

is not proper rational function. So we have to



x=(4+B)x* +(B+C)x+1{4+C)
Equating the coefficient of x, x? and constant on both sides, we get,
A+B=5
B+C=1
4+C=0

Solving these equation we get,

A=t gl gpg c=-1
2 2 2

1 lxl

(x+l)(x +1) 2(x+1) 25241

x 1 1
‘[(x +1)(x+1) J‘(JCH) J.x +1 HEJ.:F&

_1 2 -1
—Elog(x+1)+zlog(x +1)—-£m x+C |

-_-%log(x+1)+%‘log(x2 +1)-%tan_1x+C

4 J' 3x+5

|
|

P rxlaxsl dx Factoring the denominator,
we have
I~—3—xiﬁ-—-——=_—3ﬂ—§—— x> +x?rx+1
Paxttx+l (x+1)(x-1)° o ela? oy
Ix+5 4 _B_ C ~ )
(x+1)(x—1)2 hx+1+x—l+(x_1)2 —(x+1)(x —x+1)—x(x+1)|
_ 24
3x+5 =A(x -1)2+B(I-1)(x+1)+C(x+1) —(x+1)(x x+1 x)
=A( 2-—".Z.x-l~l)+.l"1‘ x2—1)+C(x+l) -=(x+1)(x2-2.x+1)

3x+5=(Ad+Bx* +(-24+Cx +(4+B+C)

Equating the coefficient of x, x* and constant terms on both sides, we get,

A+B=0
24+C=3
A+B+C=5
On solving these equation we get,

Integration
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A:l, B=—— and C=4
2
3x+5 1 1
= [~ ——dx 4 dx
j‘Jc3’+x2 -x+1 2 x+1 ‘[ (1-x)*
=llog(x+l)—llog(x-1)——4—l+c
.
_L (x+1) 4
EX (x 1) (x- 1)

COSXx

| (1-sinx)(2+ mxflx

! =I(l—ﬁn:;(8;+ sinx)

Putting sin x=t, then cos xdx =dt

Let

dt
=l iya®

Now,
1 _ 4 . B
(1-0)(2+1) (Q-1) (2+9)
or 1= 4(2+¢)+ B(1-1)

1=(24+B)+(4A~-B)t
Equating the coefficient of ¢ and constant terms on both sides, we get,
A-B=0 and 24+B=1

on solving these equation we get,

4=1 B=
3

W | =

i}_1ﬂ

“J‘(l t) 3244

J.(1 t)(2+ t)
=——log(1—t)+-log(2+ )+C

COSX

I(l—mx)(2+ﬁnx)

¢ I( +1)(x +3)

Hence, -3 log(l —sinx )+~ log(2 +sinx)+C




Let

il +1)(x ™

Putting x2 = ¢, so that 2 xdx =dt

dt
“lees

Now,
1 A B
G (E+3) (1) (e+3)
or 1=A(t+3)+B(t+1)

1=(4+B)t+34+8B
Equating the coefficient of £ and constant terms on both sides, we get,
A+B=0 and 34+B=1

on solving these equation we get,

sl gt
2 2

J-(t+1)(t+3;) 2v[(t+l) 2'[(:+3)

=% (t+1)-—-10g(t+3)+C
Hence, I(x2+1)2'zx2+3) ;bg x +1)— ~loglx +3)+C
J' dx __J‘ sinx dx
x? +2x+10 B cos® x —5Scosx + 4
Let I={—

cos? x —5cosx + 4

Putting cosx = ¢, so that — sin xdx = dt

—It2—51+4

_ dt
_"I(:—4)(:—1)
Now,
4 B

1 = +
w(t-4)(t—1) (t-1) (1-4)

Integration
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or 1= A(t-4)+ B(¢-1)
1=(4+B)t-(44~B)
Equating the coefficient of 7 and constant terms on both the sides, we get,
A+B=0 and -44-B=1
On solving these equation we get,

A-—-—l, B=+l
3 3

1dt 1 ldt
J.(r 4)(: 1) { I(r 1) 3 (t- 4)}

J(; 0 3I(f

=Slog(t—l)—§log(t—4)+c

Hence,

sinx dx 1 1
=-1 -1)——log(cosx—-4)+C
J.cosl’x—Scosx+4 30g(cos;c ) 308( * )
8 j————-—_‘i"
" Jsinx + sin2x
. dx dx
Let [—J‘sinx+sin2x _-[

sinx + 2SInx cosx
I _ I sinxdx
sinx (1 + 2cosx) sin® x(1+ 2cosx)

sinx dx

J‘(l —cos x)(1+2003x)

Putting cosx =, so that — sin xdx = dt

) J.(1 :)(1+2r)

Now,
1 4 _, B, C
(1_;2)(“2;) T(1+2) (1-0) (1+9)
or 1=4(1-2) + B(1+20)(1+ )+ C(1- 1) (1+2)
or 1=(4+B+C)+(3B+C)t+(-4+28-2C)¢

” . . ' Equating the coefficient of 1%, ¢ and constant terms on both the sides, we get,
Self-Instructional Material
m .



~A+2B-2C=0, 3B+C=0 and A+B+C=1
on solving these equation we get,
4 1 1

A==, B=-, C=--
3 6 2

1, ldt 1dt
—I(l tz)(l+2r) {I(1+2‘) 6/ (1-1) ZJ(“‘)}

1dt ldt
I(1+2r) 6-[(1 ~1) 21(1+:)

=—£xllog(l+2t)+llog(l—1)+~1-(1+t)+C
3 2 6 2

=—§log(l+2t)+—é—log(l—t)+%(1+ t)+C

dx 2 1 1
_ & .y 2 - bt
Hence, Isinx+sin2: 3 og(1+2cosx) + 6Iog(l cosx)+2(l+cosx)+C
cosx
’ J‘4—-35112.1: &
cosx
Let I =j4_sin2x dx

Putting sinx = ¢, so that cos xdx = dt

Now,
1 _ A + B
4-2 (2-1) (2+9)
or 1=4(2+1)+B(2-1)
or 1=(A4-B)t+(24+2B)

Equating the coefficient of ¢ and constant terms on both the sides, we get,
A-B=0, 24+2B=1
on solving these equation we get,

4=1 g1
4 4

d
_._1‘4_22 B I I(2+t)

Integration
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= —%log(z ~1)+ ! log(2 +1)+C

COsSX
Honce, [ 5%

P, dx-—--}‘:log(z smx)+ log(2+smx)+C

cosx 1 2+sinx
or I _ =—log — [+C
4-ginx 4 2 -sinx

10. j-___s_e_c_x_(dx
1+cosecx

L I= =
o j1 +cosecx Icosx(smx + 1)

- I SINXCOSX
cos® x (1 + sinx)

Putting sinx = ¢, so that cos xdx = dt

_ tdt _ tdt
*'[(1 —tz)(1+ t) ‘[ (1-1)(1+1)?

Now,
1 __4 B C
(1-0)(+2)* (-9 (+1) (1+2)
or t=A(1+ 1) +BA-1)(1+1)+C(1-1)
or t=A(1+2t+12)+ B(- )+ C(1-1)

t=(4+B+C)(24-C)t+(4-B)"
Equating the coefficient of 7 ¢ and constant terms on both the sides, we get,
A-B=0, 24-C=1, A+B+C=0
on solving these equation we get,
A — _1_ B - l C = —..1_
4’ 4’ 2
1 at

J-(l t)(1+t) Z(l t) 4‘[(1'*'3) ‘[2(l+t)

1
--——10g(1—f)+—4-10g(1+ t)+m+c

(1+ t) 1

Self-Instructional Material (l ) Z(IH)
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(1 + smx) 1

1
Z (1 sinx) 2(l+smx)
[ - 1 (1+sinx) 1
1+cosecx (1 sinx) 2(l+smx)
EXERCISE 6.1

Evaluate the following

. dx . dx
‘[ 242x+10 Q-2 ‘[(Jc—-l)(.vc2 —4) Q3.2 Il-x-xz

(x +2)dx . HMM ' (Iz+x+1)dx
(x 2) o) Q.5: | ey R ) I_W
Q.7.: J( +1)dx Q.8: | (Z+il) Q.9.: I;(_x:—;_ljdx
: (x +l)(x +2) |
. ‘(x S

dx
14.: 150 [ =
e’(x l) ® I"/—-_ ° ‘[l+38"+222‘
Q- 16 f Q.17: | ws:dx I cosxdx
1+cos’x (l sinx) (2+sinx)
cOSX
20.:
R ‘[msx @ '[2 Jcos2x
ANSWERS
(l) -:-;-tan_].x;l + (2) “31-10g(x—1)+%log(x_2)+_].l_zlog(x+2)+c
@) 1 «/§+2x+l +C @) (x 2! 2 _ 5 2+C
J_J-le (xl) xz(x_z)
(5) log{x-1)-5log(x-2)+4log(x-3)+C
3
© %10g(x+2)+:1‘-10gx—51;+c M 53——x+tan'lx+C
® logr--log %% +1)+tan” x+C ) llogx4_1+c
2 395
(10) x+-—2-—tan_l x 3tan_1x+c (11) _1_10 x* +C
Ji Ji 2 4 gJc4+l

Inte g‘?‘aﬁon
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(12) glog(x+1)*§log(x+2)+656+%log(x—2)+c (13) log 1]+C

(14) log{e‘ +’\/e1"+a2}+C(15) o %l—zgg +C(16) —j?tan“itf/‘l"J

1 1
9(sinx—1)+5( _1)
1+4/3 tanx 1 \/_tanx 1
18 C 2
(18) s [ 2 ]+ (1) 2~/_ I—J?:tanx] +e ey \/_ x/_tanx+1 e

3.7 INTEGRATION OF RATIONAL AND IRRATIONAL ALGEBRAIC
FUNCTIONS

(a) Integration of rational algebraic fﬁncﬁons. :

an —-;;log(sinx—l)— log(smx+2)+C

In earlier sections we have integrated some rational algebraic functions by using
partial fractions. However, here some more important integration of rational algebraic
functions have been illustrated —

R P —

ax" +bx+c
To evaluate the above integral we first write ax” + bx + cin the form of standard -
integrals.
b2 2
Now, J' axt+bx+c)de=axt + bx+—+c——
4a 4a

2, b b ) dac-b?
=a x" +—x+ +
2 4a

a 4a
, b b)) dac-b?
=gl x"+—x+ +
2a  44° 4q

=a [x+—":'—Jz+""wdb2
2a 4q
2
( 1}2 {4«:—&2}
= X+— | +
2a 4q

Casel:  When dac> b%, then



http:1_log.J5

A
o2
1 2a ta.n’l 2a

a —\l dac-b* Vdac - b /20
2 -1 2ax+ b

Vdac - b? Jaac-b*

+C

Casell: Whenbd’ > 4qac, then

b Vb*-4ac
X+———
2a 2a +
) 2
2a 2a
1 0g2x+b—\/b2—4ac

- 1
Vb —dac 2+ b+ Vb? —dac

1>< 2a
a 2xw/b2 —4dac

log

+C

x3+x
xt-16

3
X +x
Let, I=Ix4_l6dx

e X x
-J.x4 16dx+'[x‘—16dx

I +1, (sap)

@ [

Integration
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Putting x* 16 =t

Wehave, [, =[—"—adx 4x° dx = dt
x" +16 3 1
or x“dx=-dt
4
ol
47 ¢
—llo t+C
4 g 1
iy “
—Zlog x —]6)+C1
Putting x> =t
X
and I, = 2xdx=dt
2 Ix4—16 1
xdx =-dt
2
lps
27216
1 t—-4
=—x——oIog—+C
27 2xa Bria T
1 x?
=—Ilo +C
16 g.vc2+ 2
1 2_4
s D=1+, ==log(x —16)+—10g +C C=C, +G,
4 x%+4
52
x +Xx -
I= -—lo x2-16 +——10 +C
J'x +16 ¢ ) gx +4




S ) S ¥ N LR T 1Y% H
1-— |dx '
1 X l

1 1
I=—-I,+~-1 1
3 1+2 2 (1)
1 1
1"_2 dx Putting x+—=t
Now, 11=I X X
1\ 1
] - )i
X X
x+l 1 2
t-1 . -
| j’z"' - Liogt=l) )=]log———-——"l‘ +C =2r0gE Xt
e =1 2 (t I) 2 x4+ —+1 2 x“+x+1
X “
l+—1- dx Putti 1_
xz mngx—-;—!
S 1
(x——) +3 (x+——2de=dt
X X
_I dt
- 2
t2+(\/§)
-j;m”‘j_+cz
_1
1. )
1.y x*-1
—tan +C
3 Vix 2
Substituting I, and I, in (1) we get,
1. 1, 1, x>-x+1 1 _x*-1 1 1
I=-5L+-I,==lo + tan +=-C+-C
21T 2 e 2Tt
2 2 2
x“dx 1, x°-x+1 1 4 x° =1
I=[—F— ="1o +—tan | |+ C
j‘.\c“+x2+1 4 izl 2B (5]
[Whene c=lcl+-1-czj
2 2

Integration






[x+%] —(\/5)2 | (1-%)&:&

I dt
@
1
~—2
‘- J— = 1o " -+ C,

2

1
=—-—-1 =
R Y gﬁ%,(ﬁ)

1
[ de Putting x+l=t

Substituting I, and 7, in (1) we get,
1 1)1 _fx%-1
I=[——dv=-|—tan| 2 ||4C
Ix4+1 2[\5 [-ﬁx H :
‘ 1 1, x2=Jzx+1] 1
- log— -=C,
21242 xtedx+1| 2
x1 -1 1 x2 —J2x+1
- log— +C
42 Txr+2x+1

(Where c=1c, —lch
27172

1

) 22 m“l[ V2x

Integration
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=sh--1 (D

1 1
L+ — Jdx Putting x—— =t
X x

1)? 1
( —'—J +3 S (1+—7]dx=dt
X X

Now, I, = I

1
[ ——2de Putting x+.—1-=t

2
(x+l} -1 (l——li-]dx=dt
x X

or 12=J'

+—-1 o2
1 * 1 x“~x+1
=—lo +C, =~-log—————+C
2 g 273 sz_x+l 2

x+—+1
x

Substituting {; and 7, in (1) we get,




(6) I”‘T’i_'—

1 11 4fx*-1)] 1
I=[————dx=—|—=t I ||+=C
Ix4+x2+l 2[\/?_: (ﬁxﬂ 2!

1, x%-1 1

=2-\/§ J3x T4

b 4 +x2+1

1 dt

[==
2'[|t2+t+l
dt

11, x*—-x+1] 1
—-log= 2T __C
I:Z gx2+x+l] 272

2
logfz—fj—l+c
x“+x+1

Where C_-_-_l.Cl_.lCZ
2 2
Putting x* =t
2xdx = dx

ady =2
2

1
237, 1
A28 1 — -
% 4 4

1

Integration
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Let

®

®

Let

J

Let

2 1 4(x+3/4)
= tan +C
NEY NE
2 1 4x+3+

TR 7|

5x -2

1+ 2x +3x2

I=_[—-(—5x-—2);dx
1+2x+3x

_Sj(x—2/5)dx
Ty 2% +3x2

=§IL6:?_J_¢;

641+ 2x +3x2
6x+2-—2—%)
dx

=%I[

1+ 2x +3x2

Putting X =t
3x2dx = dt

Putting x+ % =t
Sode=dt



22
or I(6x+2)dbc —EJ‘——;*-“
’ 1+ 2x + 3x? 14 2x + 3x2
_‘-I (6x+2) 3 dx
1+2x + 322 3 T
5 11
Now, Il _[ (6x+2) Putting 1+2x +3x% =1
1+2x+3x2
(2+6x)dx =dt
[
t
=logt+C1
I =log(1+2x+3x7) +
dx 1 dx 1 dx
And g PESvri ] o s e 1,1 11
X' +—x+ x +2><x><—+—-—§+§
1 dx | dx

1 3 1x+5
=—X—tan" +C
3" 2 2
3
__._1__ _|3x+l C
2 2
Substituting 7, and 7, in (1) we get,
(5x-2) 11[1 _13x+1) 11
—-lo 1+2x+3x° J+~C;—-—|—=tan  — =— |-—
'[1+2x+3x g( ) 3l 2 377
5 2 11 _]3x+1
==log{l+2x+3x“ }———tan +C
6 g( ) 3V2 2

(W?zere

c=2c, —}—102)
6 ' 3

Integration
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dx
(10)
5%
Solation: Let x=1¢5
- dx =684t
g == [
s }/ }/ 2(1 t) (1- t)
=J’6[—:2—:—1+-——)d:
1-¢
2 2
=—%——§;——610g(1—t)+c
=—2’.J|:}é —Sx% —Glo{l—x%‘]+c
11
(11 IZ-!-GOSx
dx dx
Solution : =
oluton j2+cosx I2+cosz%—sin2%
I dx

“@e)oos? 34+ (2-Dsin?

Z,Vdr
~‘I'Z!cosziy+smz-y J‘3+tan2y

du ; X
=2 Putting tan— =u
'[3+u2 2
1 B
Escc %dx-—du
(m’lx)duzdu
2
2 -1 u
=—tan~ —=+C
3 V3




(12) j" dx

(b) Integration of irrational algebraic functions :

In this sections we will find the integration of different forms of irrational algebraic
functions. Before doing this, it is most essential to find the integrtion of some special
functions, to get formulae which can be applied directly to integrate many irrational

algebraic functions.
® | Vx? + o dra
Let [ =I\/x2 +a? dx

wI=[Ve? +a? de
= [{a® tan’ 6.+ a* - asec? 06
= a* [ Jsec? 6 sec? 06
=|az'[sv:c:li)sec2 8d6

Now taking sec’ § as second function and integrating
by parts we get,
I = a*[sech - tan@ - [ sec0 tanf tan646]

= a*[sec0 - tan® [ secH tan 646 |
= a”[3ecO-tan® [ sec (sec” 6 ~ 1) 46 |

Putting x}=t
3xlde =dt
x2dx =L di
3

Putting x = atan6

dx = asec’ 646

=a2[sec0-tan9—-02 [secOsec? 046 + a? jsecede]

=a®secO tanh -7 + azlogbec9+tan9[+ (0}

Integration
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a a a

=xVx? +a® +a7'loglxw1x2 +a21+C
—_— 2
I=12c-\/x—2 +a? +92—--logi.t+\/x2 +a2‘+C

_ 2
\J\fherec_—.[____cl a2 I()_gg}

2 2 2 2

\/x +a” X \/x +a” x

or leaz.,_____.__—f-azlogl ._I.}.Cl
a

Q) J‘ vx? -t dx

Let I= I'\/xz —-at dx Putting  x =asec
dx = asecOtanBd 6

=j@+sec29-a2 -asecO tanBdo

= a? [ |/tan? § sccftan6d6 /’ o
= o [secO tan’ 646 8
a

=a? Isece(secz-—l)dﬂ

I = [secOscc” 0400 - [ secd0
I = d*I, - a* loglsecd + tan) )
Where [, =Imcesec29d9 |
Taking sec’ 8 as second function and seée as first and integrating by parts we get,
I, =secO - tan6 -  soc6 tan6d
= 5600 - tand - [sech(sec? 0 1) d
=secf)-tan® — [socBsoc” 0 + [soc0d6

=sech -tanf - 1, + loglsec® + tan0)|
s, 20 =secO - tan0 + logkect + tan6)|

I =%sece-tan9+-;—logbecé+tan9] A2)

From equation (1) and (2) we get,

a2

2
I= —z—sece -tan0 + %lo@clh tan6| - a” Yoglec® + tan6| + a*C,



2 2
= %—sece -tanf ~ %— logsec® + tan| + a’C,

,2 2
X —-d x
N+

a a

g L ——log’ﬁx -a +xl——loga+a ¢,
=§- xz_az —%-loglﬂxz—a2 +.\:’+C
2

Where C = a*C, -%—loga

3) j Jat -x2 dx

Let 1=J‘Ja2 ~x dx Putting x = asin®

dx = acos0d9
+ I=[Va? ~asin?8 (acos) 40
o I=[a|1-5in0 -acos0d®
7= [aycos?® -a-cosBdd

=g° J’ sinBeosd -dO (D

(12 .
= —Z—IZSInGcosB do

=—‘§—jsin2(-) de

=q° Ic032 040

d8

=02J'1+00329
2

= —-9 2sincosH + —9
4 2

Integration
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Putting x =atanf
x*+a dx = asec? 040

¢ asec’0d®
-J-\Jaztan29+az
- gsec? 8d©
B avtan?6 +1
=Jusec29d9
secO

=J‘secede

= lﬂme'l' t8n9|+ Cl

[7, 3
=1og{_f__"_’_‘f__+ :’E}, c,

a a

==log[x+\lx2+az)+c (Where C=C—loga)

1 Putting x = atan®
2 _ 42 dx = asecO tanBd 9
_I asecO tan6d 0
Va? sec? 0~ a?
_J-asece tan06d 0
aVsec? 0 -1 |
_ J-sece 14n8d0 —
1410 0
= [sec0dt a

= loghecO + tand | + C,



X
=log—+
a a

j—-—l—dx=1og|x+Jx2 —a“+c ( Where C = Cr-loga)
/xz_az

1
© G

Let [= ! dx Putting x = asin®
a* -x? dx = acos® 4o

. =J- acosd 49

a* —a*sin’ @
=I acosb do
a1 -sin®8
=J'¢¢39d9
¢ps0
=0+C

.1 X
=sin ' =4+ C
a

Note: Onapplying these standard formulae we can obtain some more formulae which
are useful and can be applied to evaluate other integrals.

(0 To find the integral of I\/axz +bhx+c

b c
We have ax2+bx+c=a[x2+-—x+—
a a

Here two cases are shown below :
Casel: If dac-b*>0

2 2
Then ax2+bx+c=a[(x+£] +[4ac 2b H
2a 4q

Integration
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Case2: If b2>4dac

_ ) -
Then ax2+bx+c=a(x+—%’—} +[b 400}}

By substituting x + Eb_ = t, sothat dx = dt, then the above integral is reduced to
a

Y
the forms — a'[wlt2+k2dt Where k2 =4a: 2b
a
2—
and aM2+A’dr WhereA2=b4 ‘:‘w
a

These integrals can be obtained by the formulae directly mentioned earlier in this
section.

® [

Vax? +bx+c

From the example (7) the given integral can be written as :
J 3 &
{{ b J 4ac-b*
x+— | +
2a 4q*
1
and dx
' J ({ b ]2 b* —4ac
X+—1 +
2a 4q*

On putting x+—jb—=t and dx =dt
a

if 4ac > b?

if 5% > dac

then these integrals can be reduced to the form
1¢ dt , 4dac-b?
= Where £k =
afdt2+k2 4q*
2_
and lj———dt threA2=——b :ac
al 2 - 42 4a

These integrals can be obtained by the formulae mentioned earlier in this section.

SOLVED EXAMPLES

00} I'JS+4x+x2dx



Let

@

&)

@

I=(v5+dx+x?dx
N

=J‘x/£+4x+x2+1 dx

=I\/(x+2)2+1 dx
=Q—;2—)\/(x+2)2 +1 +%logF+2+\/(x+2)2 +1(+C

+2 . }
- ("2 )m +%log'x+2+ x*+4x+5+C

J\/2+4x+x2dx
Let I=I\12+4x+x2 dx

=[Varax+s® -2 a
- +27 ()’
O e (B) g2 {2 ()

2
22 e g (x42) st dx a2 C

2

+C

J;‘l___
V3+2x+x?

Let I= &

'[\,lx2 +2x+3
_ dx
Vx? +2x+142

dx
‘ﬁx+1)2+(\/i)2
=1og[(x+1)+‘/('x+1)2+(@2}+c
=1og[x+1+x/m]+c

J- dx

Vx? +4x +1

Integration
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®

()

Let [= o
\/x2 +4x+4-3

- dx
\/(x+2)2;(,/§,‘)2

=l°8l*+2+J(x+2)2+(\/§)2

(x+2)+m‘+c

+C

=log

[V2x-x? ax
Let  1=[v2r-x"ax
= [VI-1+2x-x" dx
=f\ﬁ—(x2-—2.x+l)dx
= [1=(e-1)? a

=[f__.__l_ 21-‘1'2 +_I__sin"|(x_1)+c
2 ) 2

|
dx
I'J4Jr~—x2
Let ]=I 1 dx
4x —x?
I

=J.\/4—4 &

+4x —x?

=J.J4—(f —4x+4) “

I S
Tt
. _1x—2

2



3.7.1 INTEGRATION OF [(px +q) Yax® +bx +¢ dx

Let I=I(px+q)\lax2+bx+cdx
We choose constant A and B, such that,
(px+q)=A-;;(ax2+bx+c +B
=A(2ax+b)+B
Comparing the coefficient of x and the constant term on both sides, we get —
2a4=p and Ab+B=g¢q

Solving these we get the values of A and B.
Thus, the given integral to takes the form

I=AI(2ax+ b)Vax? + bx+cdx+BVax* + bx+cdx

= Al, +BI,
Now, 11=Jl(2ax+b)w1ax2+bx+c dx
Putting ax® + bx+c=t, (2ax+b)dx=dt
oy 22 %
h 11'5.[(“ +bx+c) +C,
Similarly, 12=I'Jax2+bx+c dr can be found.

SOLVED EXAMPLE

Example 1 : j'x\ll+.1:---x2 &

Let, x=A[%(l+x—x2)}+B

x=A(1-2x)+B
Equating the coefficient of x and constant term on both sides, we get
-24=1, A+B=0

Onsolvingtheseweget,A=—-;~ and B=% thus the given integral takes the form

- 2. ] 2, 1 )
I—Ix l+x-x“dx = 5{(1—2.!) l+x—x dx+5 1+ x—-x"dx

1, 1
=——L+-1 vl
RAPE (1)

Integration
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Now, 11=J'(1—-21) 1+x-x%dx

s =[()ra
iy_Z-
%

I = %(l+x—x2)% +C

or I =—+C|

Putting these values in (1), we get —

3.7.2 INTEGRATION OF | -—f’%"_—
ax”+PDX+¢

pxtgq
ax“ +bx+¢

We choose constants A and B such that

Putting 1+x~x% =+¢

(1-2x)dx =dt

. 1 2t
m —

=-1—(x—-l wu-x—xl +-5-sin'
20 2 8
1 7 5. .
=—(2x~1)l+x-x" +=5
4( Wi+x-x 550

and 1,_=I 1+x-x2dx=j\/:2x%+%-i——x2

Helei)

Putting x-%:t

so that dx = dt

‘1]

2

- ==24C
Jg 2

(szgl)+ c,

Ix(1+x—x2) dx =%(1+x*x2)% + —;-(fol)1}1+x—x2 + i-s-ﬁ-sin"" (23;1) +C

Where € = <1762



d
px+qg= AEX—(aJc2 + bx+c)+B
px+q=A(2ax+b)+B
Comparing the coefficient of x and constant terms on both sides, we get
p= _2Aa, Ab+B=¢q
On solving these equation we get,
/

A=£, and B=Lq+£’z)
2a 2a

Putting these values the given integral reduces to -
1=-2] 2ax+b ¢ g9-bpla

2a° Jax* +bx+e “Nax’+bx+c
I=-2—}:?--'J¢;v:2+l."»:+c+qr——-‘T-J’-l'2 &

2a° Jax +bx+ ¢

The integral of second term can be easily found by the methods discussed earlier in
this section.

dx

SOLVED EXAMPLE
Example1:

I x+1 dx
vrl-x+l
Let, I='[___’.‘_i.1_.._dx
x?-x+1

Choosing constant A and B such that,
x+l.=Ai x? —x+l)+B
dx

x+1=A(2x-1)+B
Comparing the coefficient of x and constant terms on both sides, we get
24 =1, ~A+B=1

Solving these we get 4 =%’ B= %
.. the given integral takes the form

,=lj -1 dx+3j_—d‘-—-
2 Vxl-x+1 27 Jx2 —x+1

=vx? —Jc+1+-32-1l (1)

Now for, I

=j_dx_'
Vxl-x+1

Integration

167



Business Mathematics

= &
sz -—2x—1-xx+—l--——l-+1
2 4 4

{5
e b3 (2]
=1og[(2x-1)+ \/xz_-;:f];c; ~log2

Putting these values of [, in (1) we get,

g 1:%1{ 2 —x+l+%log[(2x—-l)+1/x2 -x+1]+%c, ——;-logz
-_-%1/;;2 —x+1 +%Iog[(2x—l)+1fx2 —x+1]+C

Where C =%(Cl ~log)

(ao'x" +ax™ i, +a,,)

vax*+bx+C

(aox" +ax" a,,)

vax* + bx+c

= (Cox"‘1 + Clx"“2+...+C,,_I)\/ax2 +bx+c+ C,I—JT_L’;__—
ax“ +bx+c

3.7.3 INTEGRATION OF

dx

Let [=

When Cy,C,...C, are constants to be determined,
Differentiating both sides and multiplying by vax? + bx + ¢ , we get |
apx" +ax" " + ax" 4, = [(n ~1)Cox"? +'(n ~2)Cx™ 3+, ..+C,_2]

(m:2 +bx+ c) + (C(,.r""l + Clx""2+...C,n])(E§—‘£J+ C,
Equating the coefficient of like powers of x, and constant terms, we can easily find the
values of constants Cy,C;...C,, and thus the integral can be evaluated as earlier.



SOLVED EXAMPLE
1
Example 1: I% dx
+X+
x“+2+3
Let dx=(Cyx+C Vxl+x+1+C A1)
'[\/x2+x+ ( 1) ZIVx 2 ix+1

Differentiating both sides with respect to X, we get—

2
f'iziﬂ"—CU Vx +x+1+(C0x+C1 1 (2x+1) + Cz

Vel +x+1 232 4x+1 VxP+x+l

Multiplying above equation by vx? +x + 1, we get

x2+2x+3=cﬂ(x2 +x+l)+%(Cox+C1)(2x—1)+C2
2 2 1 1 1
=Cox“+Cox+Cy+Cyx +§Cox+-2-C!x+5Cl+C2
2 3 1
=2Cy x +§Cox+C,x+Cf,+§Cl+C2
2 2 (3 1
x“+20+3=2C,x" + ECO+C1 +C0+ECl+C2

Equating the coefficient of like powers of x and constants terms on both sides we get,

2C0=1, %Co+cl =2, C0+%C1+C2 =3

On solving these equations we get

1 5 15
Co==, Ci=—, (=
0=7 1<% ey
Putting the values of Cyy, C; and C;, in (1) we get,
1
x“+2x+3 1 5 15 dx
——-—*——dx=(*x+ J axtl+ S —e ()
I\/x2+x+1 2 4 vaz+x+1 :
=1(zx+s)\/x2+x+1+91, )

dx

hef ]
x"+x+1 x +2x2x+%—%+1

Now,

e

Integration
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| E
|

= dx :
\/(H 1y +(4)

2
=log(x+}é)+\/tx+%)2+[‘6/4] +C,
= log{(2x+l)+ Vx? +x+1} +C, C,=C, -log2
Putting this in (2) we get,

2
Ii-—-l-ix—i?— dx=—}(2x+5)s/x2 +x+1

2
+—1§log](2x+i)+\!x2 +x+1 +1—85-C2

x+x+1
=%(2x+5)\}x2 +x+l+%log,(2x+l)+\/x2 +x+1|+C,

Where C= 1826‘2

3.7.4 INTEGRATION OF az0, p20

1
(px +q) Vax? +bx +c '

Let

dx
I=
J.(px+ g) Vax® +bx+c

Putting px+q=l,px+q>0,so;hatpdx=——li-dz andx:(-l-—q]p
z z z

Ry i

P.I 1Y 1
’2‘2"\/;[74] [ 23

Which after simplification takes the form
! 2V dz

= "I ol Roa o

Az" +Bz+C

which can be eaily evaluated.

SOLVED EXAMPLE

Example 1: I

v
(x-1)"Va?+1

Let

. <
[=[—% . (1)
'[(Jc—l)zwlsn:2 +1



Putting x~1= }/ 50 that dx = ~—ds andx=(l+1)=[l”]

) » ¥4 F4 z
, 1 dz
.. I-'-='-J' 5 > [—-EJ
(l _ (l+z] ol z
4 ¥4
B z dz

Iw/222+2z+1

Choosing constant A and B, such that

—z=A-gz—(222+22+1)+B

or -z=A(4z+2)+B
~-z=44z+24+B
Comparing the coefficient of z and the constant terms on both sides, we get
44 =-1, 2A+B=0

On solving these equation, we get A = ~% and B = ——%

(4z+2)dz

1 dz
‘[\/22 +2z+1 J'\/Zz +2z+1 2I\622+22+1

e 2 ot raga -t dz
=2 2z°+2z+1 2\/5‘[ 22+z+}é

1 3 1
=222 42241+ —=] ...(1
2 242! W

o dz

2Z+z+ Y
o d

VB + Y ‘
QR AR
=log[222+lj+\/(zz +z +}§)(+CI

Now, I =I

= log + CI.

Integration
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.

22+1+21’ b +z2+ l
5 }é)rc1

= log’(2z+1)+2\[(zz + H}{)lw2

Where C, =(C, -log2)

= log

Putting these value of I in (2), we get

z dz _'_l. 2
—Im = 2 V2ze+2z+1

‘ 1 -1
+5:/_é—logk2:+1)+2‘[(zz +z+}é) +—2——5x02

z dz IJT‘—
or | = = —— 22 4+ 22 +1
J‘w/2zz+2z-+-1 2

1 | 2 |
+2—\/-3.-10g(22+1)+2‘j(z +z+%)l+c
I
Where C =—=C
RV
Replacmgzby( —I) ; we get

e J___l(( F o L)

1 1 PY 1
| 4o
+2ﬁ1°g|2[x—l+lj+ [x—lj 72
124201+ (x-1)
T2 (x--l)

2+2(x-1) \/1+(x 1)+ J(x- 1)2(
sz‘ 8 G- (-1) \

I

= ;(x 1) 1 g1b+\5 x2+1+5%_2—103[(x-—1){+c

dx ! log;Zv+~/_ x +1———log|(x N+C

(x—l)zm 2 (x 1)




3.7.5 INTEGRATION OF j (
ax

1
2 +b)\/cx2 +e

B dx 1
W ey e

1

So that dx = -—lz—dt

I ( /¢ )dr
a/t +b)‘/(c/t +e

= (a+bzz)m

Putl:ingc+et2 =2z,

H

oetdt=2zdz
o otdt=2ds
e
I-—-l zdz
a+ 4
e
__—Iae bc+ bz*
__*Ibz ae+bc
= dz
;2 _{ae-—bc)
b
1 . 2 ae-bc
=— Where £“ =
bI22+k2 [ b
1 1 _lZ
=——x—tan +C If ae > be
b k k
=—l>':-l—lcugz k+C If ae < be
b 2k Tz+k

Now replacing z by ¢ and ¢ by x, we get the required integral.

J

Integration



pusiness Mathematics

E le 1.: 1 dx
mmeels | Gy WS
dx
let = ——r —
I (xz-l) Vxl -1
Putting x=lt
dx=—-—!2—dr

(l/r )dr
(l/t2 1) J/e+1

- (1_,2)m

Again putting 1 + =72
2tdt=2zdz
oo tdt=zdz

-

1-2% 41
- dz
2t -2
.__L,[ z“‘/—
2\5 z+w/—
l ‘\/l+t —-J_ +C
1/1+t +«f_
1+'li"‘/§
=-———logmﬁ-x—-—-————+C
22 1+-lz-+w[i
x
Jx +1-+2x vC
-\fx +1+42x



—-@log Vx? +1—Jix N
4 ~Jx2+l+\5x

3.7.6 INTEGRATION OF x"'(a +bx ")’

C

Where m, 2 and p are not necessarily integers.

Let x"(a+bx") ds
Casel: If pisapossitive integer then applying binomial theorem for (a + bx")P
and this integration can be found.
CaseII: If (m + n)/nisaninteger and p = #/s. In this case we take a + bx" = ¢, 50
{3 k
1= 28 iy Where k =2
bn’ | b n
(1'—a *
Now expanding 5 J by binomial theorem, the integral can be
\

obtained.

Case IIl: If p+(m+1)/nis an integer and p is not an integer. In this case we
putx = %, then the integral is reduces to the case II and consequently the required
integral is obtained.

SOLVED EXAMPLES

N
[14-:;] dr

ooy
Let 1=jx2[1+x4]dx

|
Example 1 : ‘[ x2

4
Expanding [l + x%J by binomial theorem, we get -
1 31 1
I =Ix2 [x+4x4 +6x2 +4x4 +l]dx

38 31
=I[x2 +4x4 +6x + 4x4 +x2de

Integran



/2 4x/‘ x2 / /2
+4i X 4c

AR/ A

e L SN L R S
5 9 7 3

Example 2 : Ix7 (l + xa)%dx

Lct I =J'Jc7 (1+xs)%dx

mtl 7;1—2, which is an integer.

Putting 1+x8 -u3

8x dx =3u’du
A | =-;—Iu2(u3)%du

=§Iu4-du

5
u

2w
8 5
3

w+C

+C

40
Py s (1+x8)% +C

Rty Pl (1)
) Sf, 2\
Example 3 : Ix (l+x) dx
Let I=J'x'6(l+x2)y2dx

Here,m=-6,n=2 p= }/and—il +p= 62+l+%=—2,whlch1sanmteger

then

Putiing x=")/ sothat ds =['}{2Jdt
I=[sf {l+ }{2)%[-}{2}#




2, )\
=_It6'(t ::2) dt

=-[F ‘(t2+1)}é dt
=~It2 -t(t2 +1)}é 1

Putting #* +1 = z°
2tdt =2zdz

L 1=-](@ ) () 2
=-{(*-1) (")«
=[(z*-2") @

4 ZS

=—-—+C
3 5

2 V(2
=(r +1)} (#+) e

3 5

ERNED)

-1 - +C
3

3.7.7 INTEGRATION OF f{ x,(ax + b)/m,(ax +b)%}

To integrate a function of this type, we make the substitute ax + b= ¢, where p is

the lowest common multiple of m and n. In this way the integrand is reduced to a

rational function.
X
Example 1: dx
J (1+x)2 -(1+x)
Let I x & o Lem. of 2and3=6

i I(l+x)}é —(l+x)y3




1+Jc=--t6
dx =614t

Putting

. (¢ -1)x6e°ds
J- (t3-—t2)
'6J(t(,_l)t B

=J'(ts+t +t6+:5+:4+t3)dz

AL

t—+—+——+—+C
7 6 5 4

:%(m)% +%(l+x)% +:1’—(1+x)% +%(]+x)+§(1+x)%

5 4

¢ !
=—4+—++
g 8

+i~(1+x)% +C

3.7.8 INTEGRATION BY RATIONALISATION

dx
+Jx+b

Let I-I ' d
x+a+~Nx+b

Integration of j' 7
x+a

Multiplying the numerator and denominator by vx + @ —vx + b, we have
= I Nx+a-vx+b \

x+a++x+ b
Vira-diiE
e

(-J;:E- x+b)dx

"l

_ 1 [((+a)? (4 1) c
« % %

= 3(az_b){(x+a)% ~—(x+ b)%}+C




1 dx

Example 1: Jm

1
Let J=————dx
\G--Jl+x

Multiplying the numerator and denominator by («[; +~1+x), we get
I_I \[_+-\‘1+x
—-(1+x)
=J Jr+l+xdx

)

=—3£|:x 2 +(1+x)%]+C

EXERCISE 7.2
Integrate the following functions :

Q. 1:  V4-3xr—2? Q.2 x2-2%-5 Q.3: v9-x?
Q.4.: 1-4x? Q.5.: m Q.6.: xVl+x-—x2
Q7 (x+3)3-4-27 Q.8 ﬁ Q.9.: ﬁ
Q.10.: .\Kx—a;(x—ﬁ) Q.1L: -————ﬁ_\[% Q'lz':%—\fgj

2
Q.13 ,3\[2%—2_:—_1_;2— Q. 14.: = \/1_(1'—3 Q. 15.: (sz)\}m

Q.16 x*(1 +x3))/3 Q.17.: x(l +13)%’ Q. 18.:

1
G- D)

x (1+x)
.19.: W20 x| ——
e (1+x)% —(1+x)/)é ¢ (1-x)
ANSWERS
41[ gl 43
1) —(4x+3) (4-3x- Zx) [m]w

Integration
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2
Q) gx—g—-lw/xz +4x -5 —glog‘(x+2)+w/x2 +4x-—5]+C

@  xo-x2+2snEic

2 2 3 :

“@ i—sin“2x+—;-x\fl—-4x2 +C

)] zx:3xfx2+3x—glogx+%+\/x2+3x]+C
1 % I )
(6) (l+x x) +— (Zx DV1+x—x? +16 T
™ —,(3 —dx - x) 5 “(x 2) +(x+ m——-ﬂ"“;”zw
1 gn! (x- l)‘/—
® - f 5
® - J‘ *‘("5 D, (10)  2logx—a +yx-pj+C

(1) 2vx? +3x+1+2log|(2x +3)~+/(2x +3)* -5|+C

(12) Vx®-x+1 +%log[x—%}+\lx2 -—x+ll+C

exVh
(13) (3—x)\/3-—2x-x2+sin'l[£~;—lj+c (14) 3(;-:-’5)2%
X

as) __l__ xf+«Jx —~ (16) —1—(1+x3)%
xf-—w/x - 4
1 Ve +t+1 43 2t-1 (1‘*"‘3)]'/3
A ST AT Py ki -\ 7
(17) 5—(;3T1')—+—9'10g 1 + p) tan ‘\/5 +C, Where ¢ S

) i—{(l+x)% +x%}+C
(19) —B (1+x)% +%(l+x)% +g(l+x)% +§(1+x)%.+%(1+x)%]+c

(20) -J l-xz) —%x1/(1-x2) + %sin"lxﬁ- C



3.8 INTEGRATION OF TRANSCENDENTAL FUNCTION

The functions other than algebraic are called transcendental function. These include,
trigonometric, functions defined in special ways, we will study the integration of these
functions one by one.
3.8.1 INTEGRATION OF TRIGONOMETRIC FUNCTION
1

@ [ (% 1b)
a+ bcosx
Let I= _[ &
a+ bcosx
- dx
a [ctos.2 2 4sin? —J+ b(cos2 5 +sin® J
- &

(a+b) oosz-—;-+(a—b)sin2-;—

2
secxzdx

(e b) (ot

Here, two case arise

Casel: If a> b, then putting a}a—btan%=u

%Ja—bsecz-;—dx=du

So that the given integral takes the form,

I= 1 J 2du
Ja-b (a+b)+ u?

2 i -1 u
=——x——13n
va-b a+b (-Ja+b]

.2 umA[.ﬂ:éme]

1/‘32_1,2 a+b 2

Casell: If a <b, then we have

Integration
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2y
sec dx
I=—-‘l I 2 Putting tan > = u
a—b an? X _[b+a] 2
2 {p-a
.'.lseczfdx=du
2 2
" b+a
=—- z b l lo b-a
(b-a) ,|b+a b+a
—a b-a
Jh—atan® -Jb+a
1 2
= log
b -d? 4b~awn§+ b+a
® - (a% £b)
a+ bsinx
Let I=I ol
a+ bsinx
[ — = - sin2x = 2X
2&m§/ 1+tan“x
a+b| — L2
1+tan2-§
f (1+tan2%)dx
a(1+tan %)+2b tan’%2
I seczxzdx
= 2
a+a tan %+men%
Putting tan¥, =4
-.1sec2x2¢c=du
2
scczxzdx=2du
__J- 2du

a+au+2bu


http:Mathemati.cs

e
u’ +2 u+l
a

___2_‘[ du
a b b b

A 2X— gt m— + 1
a a: &l

=3j du__ b2
GOl

Casel: If a<b, thenputting a® —b® < O then we bave,
= _Z_J' du

=5
e
F (oo 2)+ 2

1 (tan/ b)- W od
J— (054 /) + J—Z

(atany+ b) -Jbz -

Here, two case arise

log

(atan/ /)+\/H

CaseHl: Ifa>b, thena-b>0, we have

2 du
I==
a bY a*-b?
g
a a
or I=g du >
a b 2 aZ_bZ
(H_J +
a a

Integration
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)

@

Let

1
&}
A
—~
a1
g.'_.
=t
I
+
o
—

SOLVED EXAMPLES

dx
I 5+ 4cosx

dx
S+4cosx

& cos?.x-—:m——-—-l—tanz%
1+ tan %

Let I=I

- =
a (lmn”/A]

(l+tan2x dx

5(1+ tanzy)m(l taan/)

sec? X/ dx

= 2
9+tan2%

tan%zu
.'.%secz%dx=du

2du caxtant i

9+ u? 3 3

tan %,
:g-tanﬁl{-—-—-—-—-z}'l' C

it

4+ 5sinx

~J 4+ Ssinx



_'[ { 2tan3/ J
l+tan2%
(1+tan2x dx

I4(1+tan2y)+10tan/

— dx |

“J-4+4tan2%+10tan%

seczxzdx

_1
_4‘[ tan® %4 +10/ an ¥/ +1

_lJ- 2dt
T4 P +1042+1

=1J- dt
2 12+2x§/t+1

1 dt

2 t +2XAH§_§

e

2% Je+%-%

1. [ 4t+5-3
=—log
3 4t+5+3

.

1
+C, ——log4
] 1 3 g

‘I+A A’LCI

2tanx

Putting tan¥/

_1+tan2%

=t

1
-isecz%dx =dt

Where C =C,

1
+—-log4
3 g




& [

4cosx —1
Let I==I e
4cosx ~-1
- &
{1 tanVJ
5+4
1+tan23y

(1+tan /)dx
RGN G

B Jg ¥ +u

5 2
1 log{_@j-_&}.‘. Cl .._.___1__\/5

=7: V3-5u J1510g
1 \/‘+\/—tany 1
Where C =C, + =
J— {\/_ J-tany} ere 1+1/1_510g~/5
!
@ Il—zsinx
1-2sinx 1+ tan” %)

. SegifInstructionel Meterial
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)

R
[l+tan£‘/2J
scczxzdx

tanyﬂ

g

=j . sec? ¥4 dx

tan’ %4 ~2x2tan¥) + 44 +1

2/dx
(tan/ 2) -3

2du
='[(11—2)2—3
og 4™ 2)-V3
=2x (u 2)+~/~
(wn/ 2)-f5
tan/ 2+\/~

iy GAE)

— log

AN
[Vianx dx
Let I=[Vanx dx

2tdt
1+ tan’ x
_ 2udt
—1+t4

Putting tan%=u,

1sec2 %/ dx = du
2

+C

Putting tanx = £

.sec? xdx = 2tdt

_at
S€C x

Integration
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Consider

Y

10{

u_f}
i 2

+ Y/ -

i

t+}/+-/_

e



B 1 log t+/ \/—
_2\/5 r+}/+f

tanx —+/2tanx +1

=2~.lfflog_tanx+«/§t_alTx+I
[1+/1{2)dt
zz+/1{2
e
y ~2+42
(l+%)dt
(t }/) +2

Now consider I, =

J+C1

Putting t—% =v,

tanx—xIZtanx+1:l1

0 i
¢ tanx + +2tanx +1 ]2

[ o)
-
|
| —

[1 + —I—Jdt =dv
D

Dians Leant| XL o
2 2tanx

Where C=C)+C,

Integration
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(©

——
acos x+ bsinx

acosx + bsinx

1= - & —
[l(tan/] (1+m4/)

'[a atanz’/ +than/

J. wczxzdx
- 2
a—atan J%+2btz@m%
=J‘ 24t
a—at* +2bt
__I dt
, 2b  b* b
-t ———
a a* a°
2 dt
ZEI N2 p
1"‘[‘“‘” +r-z—
a a
2 dt

a [az+b2]2 ( b]’
2 —ft-
a a

Putting tan%/ =1

2)-(?. !
a

2
a

1!12+b2 Iog J;z—g:bz b
(=)



Integration

1 'gr\la2+b2+(at— b)
Vo +5 | Na + 6% ~(at- b)
L PENT +(atan%_—b)
0
va? + b gL\/a2+b2—(atan%—b)

dx

Brample §: [+ asin

o
3cosx + dsinx
dx

8

3{1—@12%}{ 2tan:% ]

1+ tan % _ 1+ tan %
(l+ta:12x2 dx

=I3—3um2§5+8um§5

_1 (secz% dx
| _EI_I—tanz%ux%tzm%

Let I=[

1 gec? % dx = dt
2
__2_1' dr
322 2x 4,
3
2 dt
3 1—(1:2 -2x it+1—(‘r~'-l§]
3 9
_2 dt
3 16 ( 4T
l+—afe-2
_%I dt
2E
9 3

Self-Instructiona! Material
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3tan¥/ +1]
=—!-log[——é—— +C C=C, —llog3
5

@ [

acosx + bsinx + ¢

1=’[_‘_1-_..__
acosx+bsinx+c

- 1tan2J/ 2tan %)
1+t:rmz’/2 l+tan2% e
=_[ (1+tan2%)dx
a—atan® ¥ +2btan2J/+c(1+tan2V2)
. F 5 d
(a+c)+ (c+a)secz-y+2btan/
- L V“"‘
c—+—a+tan21/+ /

Here two cases arise —

Let

Casel: Ifc > g, then

I 1 f seczxzdx
c—-a b2

cta [ x/+:J —(c‘_a)z




) . (c—a)[tan%+;—f—;]
m ¢ —a? - b?
) 2 - (c- a)(tanV+b)
| e

Case Il :If ¢ < a, then

I= ! I 2 Puthing m%+ =t,
€l atC _im?x 2 tanV a-c
a-c 2 a-c 2
-1-sec2x dx =dt
7 2
2 B2
(a c) a+cJ_ an? %/ +2x b an%/ + b Ly :
a-c¢ 2 a-c¢ (a—c) (a—-c)
seczxzdx

" Integration
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Jat + b -t

1 (a C) log a-¢ i
(a C) Wat+bt-¢? Ja? + B2 —cz_t
a-c

1 J\!a +b%~¢? +(a c)t
2\/;1 +b% - ¢? 511/; +b* ¢ —(a c)t
1

- logla-c)+C

Wal + b? + ¢t g( ) 1

_ 1 val+ bt —¢ +{(a c)tan/+b}
Wat+ b —c r+b2-c -{(a c)tan/+b}
1

Where C =~ log(a—c)+C,
Wa + b +¢? :

Remark : The above integral may also be evaluated by putting a = rcosa, b = rsing, so
that r = a* + b%.

dx

Brample 7 [ a3

.
cosx +sinx + 3
dx

A=

l+tan’ ¥ | | 1+ tan® 34
(1+tan2x dx
IZ(I tanzy)+2tan/+3+3tan2%
‘I sec /dx

2/ +2tanx2+5

Let I=I

2xdx

(tan/ +1) +4

Putting tan12+1=t,



2 —-—
Ssec” B dx = dt

+C

e
“I,z+4

=2 x-l—tan'l£+C
2 2

(g
2

dx

a+ bcosx + csinx
© |

!+ mcosx + nsinx

a+ bcosx + ¢sinx
Let 1:] — dx
!+ mcosx +nsinx

Let us choose'the real numbers, A, B and C, such that

a+ boosx + csinx = A(l + mcosx + nsinx)+ Bi—(! + mcosx + nsinx)

a+ bcosx + csinx = A(1+ mcosx + nsinx) +B;;(l+ mcosx + nsinx)+C

a+ bcosx + csinx = A(!+ mcosx + nsinx }+ B(-msinx + ncosx ) +C
a+ beosx + csinx = (Am + Bn)cosx + (An - Bm)s:inx +C+ Al
Equating the coefficient of cos x, sin x and constant terms on both sides, we get
Am+Bn=b, An-Bm=c, C+ Al=a
On solving these equation we get the value of A, B and C, as
2,2
. C=a(m +n)—-l(bm+cn)

] »
m? + n? m? +n? m? +n*

_bm+cn

A= - bn—cm,

Now, the given integral can be written as

Ia+bcosx+csinxdx=[bm+cn]'[dx+[bn-—cm (—msinx + ncosx)dx

I+ mcosx + nsinx m? +n? m +n? P I+ mcosx + nsinx
a(m2 +n2)—l(bm+cn)
+

J' dx
m? +n? ] + mcosx + nsinx

2 2

_ bm+ cn
m‘+n

]x +log(/+ mcosx + nsinx)

N a(m2 +n2)—l(bm+cn) &

mt+n? [+ mcosx + nsinx

Integration
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The integral in the third term can be evaluvated by the method given in {(d).

Example 8 : IM
" J 1+ 3sinx + 2cosx

Let [_.(2-1» 4cosx +3sinx

1+ 3sinx + 2cosx

Let us choose the real pumbers, A, B and C, such that

2+ 4cosx + 3sinx = A(l+3sinx+20c>sx)+8%(l+ 3sinx +2c0sx)+ C

2 +4cosx +3sinx = A(1 + 3sinx + 2cosx) + B(3cosx - 2sinx) + C

2+ 4cosx +3sinx = (34 -2B)sinx + (24 + 3B)cosx + A+ C

Equating the coefficient of cos x, sin x and the constant terms on both sides we get,
34+43B=4, 34-2B=3, and A+C=2

On solving these equation we get,
A= H, B= £ and C= -9—
13 13 13

Thus the given integral can be written as —
_ 2+ 4cosx +3sinx
[+3sinx +2cosx -

I(l+3smx+2cosx)dx+ J-(Scosx Zmnx)dr_l_ij dx

l1+3sinx+2cosx 1371+ 3sinx+2cosx
17 51 34 6 \ 9
— ——c0sx + —sinx + — log{1 + 3sinx + 2cosx ) + —x [
BEERRE 735+ g Tog )+i3<h
1) .
Whm II:I - dx
1+ 3sinx +2cosx

g

14+3x

2tan/ 1 tanzy

l+tan2/ 1+tan2/

=I (1+tan2%)dx
1+tan2%+6tan%+2—2tan2%

=J. secz%dx

2




Integration

11 sec’ %/ d

1-(tan? 34 ~2tan%7 +1-1)
s

2- (tan)/ 1)

Putting tan%—1=t,

—sec? J%dx:dt

7=t 24t
3 212

_2, 'J—+t
73 2«/‘ 2t

) log J§+(tan%—l)\
3 (st )

_ 1 o «fi—l+tan’/2
W2 ¢ J2—+1-tan%

Putting this value of /;, in (1) we get-

I=—x~"cosx+ —sinx +%log(l +3sinx +2cosx)

13 13 13
9 1 «/5.-1+tan%
+-—x log
13732 7| V2+1-tan¥)

or I=1l3[17x—51x+ 34sinx+%log(l+3sinx+2cosx)

V2 -1+ tan¥)
Elo }+C

T+

gﬁ+1—w%

pcosx + gsinx &
acosx + bsinx

)

Let [= I PCosx + gsmx qsmx
acosx + bsmuc
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Example 9 : J'

Now, we choose the real numbers, A, and B, such that

peosx + gsinx = A(acosx + bsinx) + B%(aoosx + bsinx)

or peosx + gsinx =(Aa+ Bb)cosx + (4b~ Ba)sinx
Equating the coefficient of cos x, sin x and the constant terms on both sides we get,
Aa+ Bb=p, and Ab-Ba=gq
On solving these equation we get,
a + b a“+b
Thus the given integral can be written as —

I_I(pcosx-quinx) '
- (acosx + bsinx)

3__..__(“*: ! bf) f(acosx+ bsinx)dr +[bp ki, )J' (-asinx+ boosx) |
(a +b ) a® +b?  (acosx + bsinx)

(ap+bq)[ asmx+boosx]+( (i q)

log(acosx + bsinx)+ C
a+b ,

3cosx + 4sinx
2cosx + 3sinx

= J-Scosx + 4smx
2c0sx + BSmx

Choosing the real numbers, A, and B, such that

3cosx + 4sinx = A(2cosx +3sinx) + B-:—x(Zcosx +3sinx)

3cosx + 4sinx = 4(2cosx + 3sinx) + B(—2sinx + 3cosx)
or 3cosx +4sinx = (24 +3B)cosx +(34 - 2B)sinx
Equating the coefficient of cos x, and sin x on both sides we get,
24+3B =3, and 34-28=4

On solving these equation we get,
A= 1—8- and B= 1
13’ 13

Thus the given integral can be written as —

1=I3c:osx+4s.inx I(2cosx+3mnx)dx+ J-( 231nx+3cosx)
2cosx +3sinx 137 (2cosx + 3sinx)



=g(-—25inx +3cosx) + %logpcosx + 3sinx|

. _I3cosx+4sinx
’ 2cosx + 3sinx

x2dx

Example 10 : '[(xsinx N cosx)2

x2dx

Let I=[-— -
(xsinx + cosx)

_ J- xcosx dx X
= : oz
(xsinx +cosx)” cosx

dx = % [5400sx ~36sinx + logf2cosx + 3sinx(] + C

Taking % asfirstand - ki = as the second function and integrating by
coSx (xsinx + cosx)
parts, we get _
x XCOSX d{ x xcosxdx
I=cosx-|l( i 2‘1"_[{5[ J-[ i 2 &
xsinx + cosx) cosx /7 (xsinx + cosx)
XCOSX
(xsinx + cosx)
Putting xsinx +cosx =,
(xcosx + §inx —sinx)dx =dt
xcosxdx =dt
dt
L L=[%
1 ‘[32
S S S
¢ (xsinx+cosx)

x 1
s I= —— -
cosx| xsinx +cosx

—X

- cosx(xsinx +cosx) ¥

—X

I(cosx+;smx){_ ! de
cos” x (xsinxcosx)
tanx

sinx

- cosx{xsinx +cosx) *

Cosx

Cosx

1 | -x+xsin®x +sinxcosx
(xsinx +cosx)

Integratior

atery
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1 |_sinxc:osx - (1 —_SiJ:l2 x)x

cosx (xsinx + cosx)

1 Sinx cOsX — X €08 x

cosx _(x sinx + cosx Jx cos® x

sinx —xCOSXx
XSinx 4 Cosx

J- x? __sinx —xcosx

(xsinx + cosx)? ~ xsinx +cosx

+C

® [

a+ btanx
_dx
a+ btanx

I cosxdx
acosx + bsinx

Let 1=j'

Now, taking the real numbers A and B such that

cosx = A(acosx + bsinx) + B-‘—i—(acosx + bsinx)

= A(acosx + bsinx )+ B(bcosx — asinx)
cosx =(A4a + Bb)cosx +( Ab - Ba)sinx
' Equating the coefficient of cos x, and sin x on both sides we get
Aa+ Bb=1 and Ab-Ba=0

On solving these equation we get,

a b
A= and B=
a*+b? a* + b2
cosx _ a b (bcosx - asinx)
acos+bsinx  g* +b* a*+b* acosx +bsinx
.. The given integral takes the form

cosx a b (bcosx—asinx)

i= dx + “dx
-[acos+ bsmx T+ b2 I a? + b? I acosx + bsinx

ax

b
= + loglacosx + bsinx{+ C
a2 +b2 a2+ b g |

Example 11 : I dx

3+ 2tanx



()

Let

- dx
3+2tanx
cosxdx
2-[ 3cosx +2sinx
Choosing real number A and B such that,

cosx = A(3cosx +2sinx)+ B-g;(?,cos:c +2sinx)

= A(3cosx +2sinx) + B(-3sinx + 2cosx)
cosx = (34+ 2B)cosx +(24-3B)sinx
Equating the coefficient of cos x and sin x on both sides, we get
34+2B=1, 24-3B=0

On solving these equation we get,
A= 3 and B= 2
13 13

Thus the given integral can be written as —
B J- cosxdx 3 dx+£ (2cosx—3sinx)
3cos2x +2sinx 13 13 ¥ (3cosx + 2sinx)

= I—c—.ﬁ— SIS log[3cosx +2sinx|+ C
3Jcos2x +2sinx 13 13
Isin"’ xcos” dx
If m and n are positive integers, the integral can be obtained by successive reduction
or by expressing sin” xcos” dx as—

sin™ xcos” =sin™ xcos™ ' xcos” x if m is odd and n is even

or  sin™ xcos” =sin™ xcos™ " xcosx if m is even and n is odd

This will be more clear from the following example :

Example 12: J.sin3 xcos? dx

Let 1= jsin’mos“dx
Here m=3(odd) and n=4{even)
I=Jsinxsin2xcos4xa‘x
=Isinx(1—coszx cos* xdx

Putting cosx =¢ and —sinx=dt

Integrati

jonal

vl

L



= (1-¢*)at
= I (t“ - t‘)dt = j (t6 -t")dt

o
7 5
7 5
CoOS' X COS™ X
= - +C
7 5

J’sin3 xcos® dx =~17—cos7.7c—-;—co.‘s5 x+C

Example 13 ; Isin"xcosJ dx
Let I =Isin4 xcos’ dx
Here m=4(even) and n=3 (odd)
oo =Isin4x-cos2xcosxdx
= [sin* x(1~sin” x)cosdx

Putting sin x =t and cosx dx =4t

I (1 t)dt
- (-

5

oy

“ |

g
7

sin x-%sm x+C

hhl bt

5

) 1. 1
Ism‘xcos:’xdxms-mn x—-;cos?x+C

) j sin™ xcos” xdx

If m or n is an odd positive integer or (in + n) is an even negative integer then the
integral can be obtained more easily by substitution.

Casel: Whenm ornisanodd positive integer, then putting m=2r+ 1, where ris an mteger
and 7 2 0 then by substituting cos x =t, we can find the integral for

2red

jsm XCOS xdx:jsm xcos” xdx

Self-Instructional Material
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= jsinxsinzrx'cos" xdx



Putting cosx =¢

~sinx =dt

= jsinx(l —cos? x)r -cos” xdx

=—j' (l-tz)r " dt

Now expanding (l - tz) ' by binomial theorem we can easily evaluate it.

Similarly, when n is an odd positive integer, we can evaluate it by following the same
procedure as above.

Example 14 : J.s:in7 xcos’ xdx
Let I= jsin7 xcos® xdx

Here m=7(odd) and n=3 (even) the given integral can be written as
8 xcos? xdx

I = [sinxsin
= [sinx (1-cos? x) " oos” xds
Putting cos x =t and ~ sin x dx = dt
=—| (1—t2)3t2dt
=[(# —1)3 Pt
=[ (-3¢ 14302 —1) fdt

=j (ts ~3¢6 43¢ —-tz)dt

= -;—(cosx)9 —-—;—(cosx)7 + %(cosx)s w%(cosx)B +C

9 5

Isin’xcosxdx:lcos x—icos7x+§»cos x-lco33x+C
9 7 5 3
Example 15 : Isin6 xc0s’ xdx
Let 1=jsin‘xoos3xdx

Here m=6(even) and n=13 (odd)

Integration



= the given integral can be wnitten as
I= J'sin(’ x-cos’ x-cosx dx

=jsin6x(1-sin2x " cosxdx

Putﬁngsmx;t and cos x dx =dt
='|' té(l—zz)dt
=J(16—-t8)dt
7

ML

=—-—+C
7 9

_(sinx)” (sinx)’ c
7 9

J‘sinc' xcos’ xdx = %sin7x—§sin9x+ C

Case I : When (m + n) is an even negative integer, where m and n are not necessarily integers.

Let (m +n) = 2r, where r is a positive integer, we can evaluate the integra! of
sin™ xcos” x by putting tan x =t.
. sin” xcos™ xcos” x
_fsm"' xcos” xdx =I dx
cos™ x

=Itan"' xcos™ " x dx
=J'tan”' xcos *xdx Cmen=-2r
=Itan”' xsecx dx
=ftan"' xsec?2xsec’x dx
= {tan” x(1+ tan® x)'"' sec’x dx

Putting tan x =t and sec’ x dx = dt
=ft”(1 +2Y ar

The integral can be found by expanding (1+ £)™ using binomial theorem.
1
-
5 3
5111/2 xcos/z X

-5 -3
Let I=Isin Axcos /zxdx

Example 16 :



m+n = —-G +%] = —4 (an even integer)
. the given integral can be written as
1=[>=
cos Z x

j-cos 4 xdx

cos 2x cos_/xdr

=J-sec4xdx
tan%x

_J-sec23c><s.f:c2 xdx

5
tan/zx

(1+r”)df
=I T

Putting tanx = t andsec® x dx = dt

=] [f% + t%]dr
—/+1 t~}g+1

I-/+1 —}/+1

=—§t 7 +2t}£ +C

o / / dx =2/tanx + 2 (Jcotx) +C

XCOoS§

MISCELLANEOUS SOLVED EXAMPLES
(1) Evaluate Ism% xcos® xdx
Let [I= jsin% xcos® xdx
= Isin% xcos® xcosx dx -
= Ism% (l —sin’ x)cosxdx

Putting sin x =t and cos x dx =dt

Integration
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t%-ﬁ-l 1/’/+l
]
/+1 }é+1
=it/——-—fA
7 15

i
_fsm/xcos xdx—;} Ax-—ﬁsmAJHC

dx

2 Evaluate —
@ ‘[1 +8cos? x

Let I=
Il +8cos® x

IS&C xdx

sec’x+8

(dividing Numerator and denominator bycos’x)

3 sec? x dx
Fj-tanz:c+9
Putting tan x =t and sec’ x dx =dt
dt
£+9

=1tan“[E:—x-J+C

[

dx

3 Evaluate —
) J'l-i-P;sinzx

Let I= Il+3sm x

dx
J- sec” x (dividing Numerator and denominator by cos’x)
sec? x +3tan’ x .

IS&dex
1+4tan® x
1J-secxdx

A

Putting tanx =t and sec” x dx = dt



(4)  Evaluate

Now,

And

=_1.I_£___
4 t2+}/4

:l)(_}_tm_l.i_+c

Yhoh

= %tan_l(Ztanx) +C

=%tan—l(2tanx)+c_

veos2x
j sinx

1=jmdx

ginx

dx

Jcoszx—-sinzxdx

=I sinx

=J‘\fc082x-ldx

(By Multiplying numerator and denominator by vcot” x —1)

) I (cos eczx) e

wfcotzx—l

=—IL+2——————' a +C
N (l+t2)\/(t2——l)-

=11 +12

- =~—j t‘:t—l =—loglt+1/(t2 —1)‘+C1
t—J(t2 —1) +C, =log‘msx—\/coszx—l‘+c1

. !
Puttingt=—, dt=——4dz
4 y) 22 .

=log
dt
b 2'[(!2 +I)~.h‘2 -1
—zdz

cosectxdx

st ectxvcot? x -1

- ()7

Putting cotx = f and —cosec’xdx = dt

\

Again puttingl - z* =, 2z2dz =2udu

Integration
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xl \/*+u
2\5 wﬁu

____1_l J_+Vl - z*
f—--\/l z?

1y J—t+~/t~_—_
e [_J,i_

_ 1 og V2cotx +Veot?~1
V2 V2 cotx ~veot?—1

I log%cosx ~+/cos2x V2 cosx + veos

+C,

1, =

+C,

+—1lo C,.
sinx J— V2 cosx - +eo ?.x

(6)  Evaluate (J__ +Voosx ) dx

Let = (Jtanx+ cosx ) dx

Where C, +C, =C

_ J-sinx +oosx
sinx cosx

dx

-3 I smx +cosx
J2sinxcosx
Multiplying numerator and denominator by +2

=~/5I (sinx +cosx)- &

J1-(sinx -cosx)’

Putting sinx—cos x =t
(cosx + sinx )dx = d

=P2sin 1+ C

= V2sin " (sinx ~cosx)+C,



Integration

(7  Evalvate J‘tan_1 -llfdx

Let I:=J‘tal:l_l 1—_£dx Putting x =cosu

dx =-smudu

- Itan“l 1 —cosu (-sinu)du

1+cosu
25in” ¥/
2cos2%

= _J'tan"(tan%) ﬁnu&u

= —Ig-sinudu

- —Itan'l (sinu)du

- ..-;-[u x (~cosu)—lj—cosudu]
=Y cosu+ 1jcos udu
2 2

=Ecosu—-lsinu+C
2 2

=-;-[xcos“lx- vl-x? ]+ C
(8) Evaluate [sin* xdx
Let I= j sin® x dx
=jsin“xsinxdx
= I(l —cos® 1)2 sinx dx

Putting cosx=t
—sin x dx = dt

=_j(1—:2)2d:
= _I(l 41 —212)dt

= _[(2:2 ~ ~l) dt Sl Lnstructional Material
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Evaluate

Now,

Let

3 b
LI,
37

=§—cos3x--51-oos5x-cosx+c

J.Jcos(x -0)
cos(x + 9)
/- J. yJeos(x -9) i

cos(x +0)

- JWS(" ~8)cos(x-8)

cos(x +0)cos(x-0)

[t
‘[ Jcos(x +8)cos(x -8) &

,[ cos(x B)

cosZ x — smB

dx

a Icosx cos0 + sinx sinQ
yeos? x —sin? 0

I .c0sxcosd det J- ginx sin® &
w/cos x—sin’@ cos® x —sin® ©

cosxcose

J(l smx) (1 CO8 9)

_ cosxcos® dx

1 —sin®x —1+co0s?

cosxcosd

-'[‘f 29 —sin’ x

Putting sinx=u
cos x dx = du
_
f 2 2
cos“0—u

u
=cos-sin” —— +
cosO

A =cosBI

()



- qfcoszx—sinze
Putting COSX =V
—sinxdx=dv
—dv
o Iy =5l | ————==
Jl\/vz—si.nze
= —sinB log|v + yv* - sin? 8|+ C,

=—sinb log'cosx+ \/coszx — sin® 9( +C,
I= cos0-sin” inﬁ~su1610g sx+\fcos x —sin BN+C
cosO

Where C, +C, =C

f -0 1 ;
I?Z(-:(Tie—))= cos0 -sin”! c—s:% -sind log‘cosx +/cos? x — sin’ G‘ +C

(10) Evaluate !
.2 2 \?
Osin“ x + 4¢os x)
i
Lat [I= >
~(9sin2 X+ 4coszx)
_ sect xdx
- 2
(9tan2x+4)

(l+tan2x sec? xdx

g

(9tan2x+4)z
Putting fan x =t

sec’ x dx =du

(1+t )dt
(9t +4)

Integrati
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(1+t )d:
i (%)
__l_j(l+%mnzz sec? zdz
(%tanzz+%)2

Putting tz%tanz

dt = ES@C zdz

(1+/tanzscczdz

“53) 102 )

(1+%tan22 sec? zdz
=3XI6I sec’ 2

—%I(H%tanz z)

3602 ¥4

=ixlj‘(9c>oszz+4sinzz dz
24 9

_ 1 Ig(l+cos22]+4(l—c032zj &
216 2 2

=fxll{9+9c0522 +4-4cos2z}dz

216
"E [(13+5c0527) dz

=—1—[13 . Ss‘nzz}w
432 2

.—.-—1-—13tan'1[3t)+5 el = }“C
032 Jaro7 Aaror

1 -1f 3¢ 6t
= ——— 13taﬂ —|+5 +C
432{ [2] {J4+ 92 H




113m_1(3ta.nxj+5{ 61 }+c
T 432 2 4+9tan® x

432

;
=L[13m'1[3”‘2“1xj+ 30tan J+c

4+9tan’x

3.8.2 INTEGRATION OF OTHER TRANSCENDENTAL FUNCTIONS
(EXPONENTIAL AND LOGARITHMIC)

(11) -Evaluate J%dx
a +e

J.\la +t

Putting e =1

2¢dx=dt|

=%10g{t+\la2+12}+c

1 2% 2
=—log<e™ +.la" +
2 g{

Tlogx _ eGlogx

e
(12) Jleﬂogx _eBIogx

7logx 61ogx

1=[° W
logx _ logx
—J. 1og.r log:n.J

Let

=J‘x —x:dx _

(92’)2 +C

logx =x

Integrati
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(13) J{log(logx) + (loglx)2 } dx

Let I= I{log( logx) + (loglx)z} dx

dx

= Ilog(logx) dx + I -

(logx)
1
(logx)’

Integrating first term, taking unity as second function we get

I =xlog(log(x)) - I

=Ilog(logx)-1dx+.[ dx

xdx+ I(logx) dx
1

=xloglog(x)) - I logx J‘(logx)z “

X (logx)

= xlog(log(x)) - {B—g—xxx—'[— olx v xrdls ! ~dr

| |
= xlog(log (x)) - logx I 5 dx+ I 5

(logx)

=xlog (logx)—é;+ C

Im[log(t" + l)—Zlogx] i
, :J‘m log(.:2 + 1)—210gx] i

2

]

:I " = dx

Jﬁ_

(14)

Let

1+—— dx

1 | 1
I l+x—2{lo{l+;;}<;} dx

Il



Putti11g1+i2 =t
X
-—dx=dt
R =%Iwﬁ (logt)-(-dr)
1
=EJ'~/E'10gI-dt

Taking log ¢ as first and ~/7 as second function, integrating it by parts, we get —

BRCARRE
1 t 1|¢

2 3
=__l. 2’.;/2 log,_ZI,)/z .d;:|
3 3

3
=-ltA logt-i-l.l‘t% -dt
3 3

3
3 %
=—%t/2 logt+%+‘—+c

%

3 3
=—1:/21<>g:+3:/2+c
3 9
3 3
if. 1Y2 1Y 2(. 12
=——{l+—| log|l+—|-=|1+—]| +C
3[ xzj g[ sz 9( sz
3
i, 1V4 1y 2
===|1+—| |logjl+— |--|+C
3[ xz] [og[ sz 3}
EXERCISE 8.1
Evaluate the following :
dx sin 2sinx + 3cosx
Qll: 020: dx .3.: '________ﬁ"_-'dx
Q I2+cosx Q ‘ '[J1+sinx Q JBsinx+4cosx
3+4sinx+2 - Jeos2x 1
Qa [T Qu5: Q.6: [— 5 dx
3+ 2sinx + cosx cosx cosA sin/2

Q.7.: jsin%cos3xdx Q.8.

sin”! * & Q9. L SRS
'[ a+x '[\/cos3xsin5x

Integration
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Q. 10.;

Q.13.:

Q. 15.:

1)

3
®)

@

®)

(1)
(13)
(14

3.9

J‘Jt;n; secxcosec xdx  Q.11.: I Q.12 I(3smx z)cosx

6+6cosx 5-costx— 4s1nx

dx dx
_— . 14.:
jsinx(3+ 2¢08x) Q Icos(x+ a)cos(x +b)
J' 1\/— —COos I‘J_

sin™Vx +cos™ lw/—

. ANSWERS

2 tan% . w{x T
—tan | —%= |+ C 2 =231 - -v21 — =
N [ﬁ + (2) N1 —sinx J—og 4+8]+C

%%x+515-10g(33inx+ 4cosx)+C 4 2x-3tan‘1[l+tan-§J+C

cos_l( }Itan ( °°52"J +C (6) —2Jcotx+§tan%x+c

'\[_SI]JI
sin%uﬁsinz%‘%+ C @®) a[l + i}tan"l Vx/a-xfa+C
a
-%(tanx)“% +2(tanx)}é +C (10) 2vtanx+C
LanXic (12) 3log(2-sinx)+ —+
6 2 (szinx)
i%log(l ~cosx) —% log(1+cosx)+ %10g(3 +2c¢0sx) +C _
W+ f(1-

| 1 log cos(a+b) Lo as XY 2(2x 1) S ok xl,LC
sin(a-b) ~ |cos(x+a) n
DEFINITE_ INTEGRAL

Introduction :

We have learnt to find the area of triangle, rectangle etc. in earliar classes. These areas
are the closed regions of the plane bounded by line segments. The methods which are
involved in finding such areas, can not be applied in the region which is partially or
wholly bounded by curves. The mathematical tool which ¢an solve such problems, is
the concept of definite integral. '

The definite integral is also used in economics, finance and probability.



Definition 9.1

If fbe a continuous function of x, defined on a closed interval [, b ], then f M (x)dx is

called definite integral of f(x) between the limits a and b. Here a is called lower limit
and b is called upper limit. The interval [, b ], is called range of integrals.

If j f(x)dx=F (x), when % S(x)=F(x), then L” f(x)=F(b)-F(a)

"If a function is integrated under two limits, it is called definte integral."

We know that,

[f(x)ax=F(z)+C ...(1) Indefinite integral of f(x)
Putting x =b in equation (1), we get —

[ f(x)dx=F(b)+C . 2)
Putting x = a in equation (1), we get —

[ f(x)dx =F(a)+C (3

Subtracting (3) from (2) we get—-
I:f(x)dx = [(F(b) +C)-(F(a)+ C)]

We see that f(5) - f(a) is definite integral, the constant term vanishes.
The above definte integral can also be written as,

J: f(x)dz=[F(x))’ = F(8)-F(a)
Where  F(x)=[ f(x)dx or -:;F(x) - f(x)

Remark : The value of a definite integral over any particular integral does not depend on the
variable of integration, but depends on the function and the interval. If the
independent variable is denoted by u or ¢ instead of x, we simply write the integral of

[7()du or ['1(t)ds instead of ['f(x)ds
Hence the variable of integration is called duromy variables.
SOLVED EXAMPLES
Example 1.: Evaluate f (x +1) ax

Solution: Wehave

J;z(xS +1) dx:%%—x

~instr

jonal
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2
" f(xs + 1) dx = [E;— +x] ( by definition)

Hence, f(x’ +1) dx =

Example 2.: Evaluate L:[xez" +sm£2x—J dx

Solution: We have

1
2 2
=g ——e“ +-———[0-1
¢ -2 —{0-1]
212,21

2 Tt 2

' : Y (20ee? x4 3
Seif-Instructional Material Example 3.:  Evaluate L (Zsec +x +2) dx



Example 4.: Evaluate f

Solution : We have
I(2m2x+x3+2) dx
=j2sec2xdx+jx3dx+2jdx
=2tanx+£4~+2x
4
. Z
IOA(Zseczx+x3+2)dx={2tanx+§+2x} 4

0

—[2tanx [ ]/ +2] J\:]‘J

[2tan——tan0] [(/) }+2[%—0]

3.10 EVALUATION OF DEFINITE INTEGRAL BY SUBSTITUTION :

To evaluate definite integral by substitution the original variables are changed to
the new variables and the limits of original integral are changed according to the
new variable OR after the integration the new variables are in terms of the original
variables and the integral is obtained by applying the limits of the original
variables.

T

0 5+4c0sx

Solution : We have
e
54—4(:03):= 1—tan? %
’ °5+4[J

Ix
1+tan 5

(14w’ 37) i (LMJ

n
£5+5m2x2+4—4m2% 1+ tan” %4

Integration

il
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"mz%dx

R
- J;5+4cosx —-([94-;2

[5(5 -4c0s0)4 sin0 d
0

Example 5.: Evaluate

Solution: We have

[5(5-4cos0)+ sinb 0
4

x Y
~ [5(5-4c0s0) sin08
0
) Y
=—[5(5-41) dr

1

fre]
5

Putting tan%=r

.'.lmz x2 dx= dt
2

where x =0, t=0

xX=7, (=

Putting cosb =¢
-sin0d0 = dt

Where. 0=9, t=1
0=m t=-1



-1
=[(5 - 4:)74.]
1
=(5+4)% —(5-4)%
=% 1
=9J3-1
3.1 GENERAL PROPERTIES OF DEFINITE INTEGRAL

The following properties of definite integrals are more useful in the evaluation of
the definite integrals more easily when the integrand is not a simple function.

Progerty I: [ f(x)ds =] f(1)at
Proof : Lot [f(x)dx=F(x) Then [f(t)de=F(r)
and [ 'f(x)dx=F(L)-F(a)= [ f()d

Property I : [0 7Gx == [ 1(x)ax

Proof :  LHS=[f(x)dx=F(b)-F(a)
={F(a)-F(L)]
{1y -
= {J’: f(x)dx] = RHS

Property IIl.: For real numbers a, b, c; where a< c< b
b
[ (x)ae = [ f(x)ae+ [ £(x)dx

Proof :  LHS=['f(x)dr=F(b)-F(a), and
RHS = [ f(x)dr + [ f(x)dx

=F(c)~F(a)+ F(b)-F(c)

- F(b)-F(a)

= LHS
Property (IIT) can be generalised as

Ib f()e = [ f(x)ds+ [ f(x)drs..+ E’_ S(x)de + f, f(x)dx

Integration
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For RHS =F(c¢,)~F(a)+ F(c,) - F(¢))+...F(c,)-F(c,,)
+F(b)-F(c,)
Property IV : Lbf(x) =I:f{(a+b)—x}dx
Proof : Let a+b—x=1t so, dx=dt
Where x =a, t=b, when x=05b, t=a

Thus as x varies from a to b, f varies from b to a,

also  x=a+b-t therefore,
[ rG)de=—[ f(a+b~1)ar
= I:f (a+b-1)dr (by property I1I)
= [*f(a+b-x)dx

[ Since the variable of definite integral is a dummy variable]-
The above integral can be divided into two parts —

@ [[F(x)dx=[f(a-x)dx and (i) j:f(x)dx - j:f(b—x)dx

For (1) Puttinga-x =¢, so dx =—dt
Where x=0, =0, when x=0, t=a

- RHS of ()= f(r)dt
= f;f (£)a by property (1T)

= E; f(x)dx (by changing the variables)

Sirilarly we can prove (ii)

Property (V) : fa f(x)dx = 2[: f(x)dx if fis an even function
le. f(-—x)zf(x)
={) if fis an odd function

ie. f(-x)=-f(x)
Proof: We have

Tf(x)dt = _?f(x)dr+'?f(x)dx --(1) by property (I)

Seif-Instrucrionsl Matgrial
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Now for If(x)dx putting -x=t¢, so —dx =4t

—a

Where x =—@q, t =a and where x=0, t=0

f (x)dx = _f F(~t)at

f(-t)dt

f(-x)dx (By changing the variable ¢ to x)

O ey, B O Sy, 0

Using this in equation in (1) we have,

0 a 0
[1(x)dx = [ (-%)dx + [ f(x)ax 2
-a 0 a
(i) When f'is an even function, then (2) takes the form,
0 a a
j f(x)dx = [ f(x)dx + j f(x)dx 2 (=)= f(x)
—a 0 0
=2 f(x)dx
0

(ii) When fis an odd function, the (2) becomes,

f F(x)ds = -] £(x)as +I s (=) ==1(x)

=0
Property (vi) :Tf(x)dszT f(x)dx if f(2a-x)=1(x)
=0 if f(2a-x)=~ f(x)

Proof: We have
2a a 2a
[£(x)dx = f(x)ds+ [7(x)dx  ..Q1) by property (@)
0 0 a

Putting 2a—x=1¢ sothat —dx=dt ordx =-dt

Where x =a, t=a and where x=2a, t=0

Inteyrarion

Self-Instractional Mareriv’
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T f(x)dx = —i fQa-1t)dt

f(2a-1)dt By property (iii)

f(2a-x)dx (By changing the variable 7 to x)

€ e, &y O Sy, )

Putting this in equation (1) we get,

Tf (x)dx = jf (x)dx+ jf (2a-x)dx - 2)

Now, (i) if j f(2a-x) = f(x) then(2) bcoomeg,
jff(x)dt =J:f(x)dx + If(x)dx v f(=x) = f(x)

=2Tf(x)dx

)

Now, (ii) if [ f(2a~x)=~-/(x) then (2) becomes,
zf f(x)dx = j f(x)dx - j‘ f(x)dx
=0

IMPORTANT EXAMPLES

. %
Example 6.: Prove that Ilog(cotx)dx =0
0

%
Solution: Let - I= I!og(ootx)dx (D
0

%
= I log(cot(% - ))dx by property (iv)
o



. f log(tanx)dx )
0
Adding (1) and (2), we get
% )
2= I log(cotx)dx + Jlog(tanx)dx
0 0

%
- f{log(mtx)+ log(tanx)}ds

V)
= flog(cotx x tanx }dx
0

= leog(l)d_x
0
=0
% n
Example 7.: Prove that J'log(secx)afx == log2
0

%
Solution: Let I=jlog(secx)dx D)
0

%
= f log{sec(E - x]}aﬁr
0 Z '
i
= jlog(cosx)dx ..{2) by property (iv)
[t} ‘

Adding (1) and (2), we get

T

% 2
2/ = flog(secx)dw [1og((cosx)d
0 0

/)
= J‘z J‘{log(si.nx)f log(cosx)}dx

0 0

b7
= flog(sinxcos,t)dx
0

Integration



Business Mathematics

b .
_ Ilog(smxcosx] &
o 2

% %
= | 1og(sin2x)dx-flog2dx

= [log(sin2x) dx —(;:)0/2 log2

% i
= flog(sin?.x)dr—glog2 ..(3)
0

p
Now for [log(sin2x)dr
0
PuttingZx——-t,dx:—;-dt, wherex=0,t=0,x=ﬂ2, t=n

n

) n
- [log(sin2x)dx = % [log(sins)dt
0 0

2 %
=2 [ log(sin¢)dt by property (vi)
0
and sin(® — x) = sinx
%
= [log(sint)ar
0

X

2
= I log(sinx)dr by changing vatiable ¢ to x
0

Putting this in (3), we get,

T
21=1-Z10g2
2%

% y
oI = flogsinxdx=——log2
! 2

T

73
Example 8.: Prove that I de =0
o L +sinxcosx



"
Solution: Let  [= [ 2X”C0S% . ()
01+s;1114\:ccns3c

)l
o 1+sin %— )cos(%—x)
7

cosx—sinx

=J‘____dx ...(I)

o 1+ cosxsinx

Adding (T) and (I) we get,
. %
2 . r

sinx —COSX COSX —Sinx
1= I — dx

1+sinxcosx 1+ cosxsinx

0 0

0
o
a

=0

_?[sinx—cosx-—cosx—sinx i
1 +sinxcosx

T »
Example 9.: Prove that J' xsu.lx dxzn(ﬁ-lj
ol+snx 2

n
Solution: Let I =J'
0

Integration
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t-rars)
=nf1— - dx
5 1+sinx

et

|
d

H

(1 sec’ x + secx tanx ) dx

= n[(x ~tanx + :v,ccx)]n
=n[(n - tanm + secn) ~ (0 - tan0 + sec0))
=n(n-0-1-1)
=n(n-2)
2 =n(n-2)
Hence [ =1t[—72£ -l]
Example 10.: ftlr—lldr

. 2
Solution:  Ler = [[x-lldx
G

1

Dx—l)=2x—1 if x>~
Now, 2

{2x-1) of x5

So, f]zx-qu =T—(Zx-l)dr+_2((2x-l)dt
0 0 Y2

(] ]
ek
0 A




x
Example 11.: Evaluate  [loosxjdx
0
Solution : Let I = J'|cosx1dx
0

COsX; ifOstg
Wehave |cosx|= .
—COSX ifESxSn

n V n :
I= i[|cosx|dx = _fcosxdx + ;(—cosx)dx
- Gae ) - s §

__(sm?}(})é

=1+1

=2
I = [fosxldx =2
0
%2
Sin X
Example 12.: Prove that '([ m T g(\/_ +1 )

N

Solutton: Let I= (1)

mn(/—0
RECEECE

dx By property (iv)

G‘-——.& Q‘—.

% 2
= j-ﬂ’f—dx (2
0 COSX + 81X
Adding (1) and (2) we get, ‘
| %o %
ﬂ:f—-—-_s“” dx+f——°°“f dx
0 SInX + CO8X 2 COSX + Sinx

Integration
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B . 2 2
sin” x COos™ x
+ - dx
smx +C08Xx COSx +SInx

Il

o"'_"& o'——-.h\_,i o‘-——n& O‘-——.s{

e 2 2
SiN° x +cos” x ;
:l

I sinx + cosx

me i cosle =
x Vs }
L’/ﬁ‘ﬂ“/‘/ﬂ’“ -

Sl w7
5%
=%/§ :l; sec(x—*%)dx

S e AR G A

A - ARV AR AL AL

=}/Ji' log(v2+1) - log(+2-1)
=}/ -log(ﬁ+l)(\/i+1)
V2" (V2-) (V2 +0)

J2+1
=) ‘°g( )
/JE 1og(~/—+1)

I=%x-j—i-log(\/—2_+l)

1
= -E-log(x/iﬂ)

Example 13.: Show that I J__tan
sinx + cosx



% =

tanx
Solution: Let I= f—dx (1
5 VSinx + vcosx )

}f—— M By property (iv)
o (5] + sl )

% eosx
) Jeosx + sinx

0

dx )

Adding (1) and (2) we get,
,Jf e f Joos
\/Eﬁ;+ COSX COsSx + \/STD;

jf {Jsi—nﬁ cosx]dx
0

sinx + vcosx

O"—;“)

Example 14.: Show that f =—
np %l+~Jcotx 12

%
Solution: ILet I=
% 1+ AJeotx

1/Sinx
= | ——dx (2
%,/sinx + 1/cosx @

fsu (79

(1)

—

'——-&ﬁ

ol ) )

-Ins;

Integration

ional



By propetty (iv)

fm+J_ . 03)

Adding (1) and (2) we get,

dx

% %

Cosx
o= j\/co_s:?+ *}fgm+@
"‘Jf e + eoss |
~ 2 | Joosx + Jsinx

[

[
Sla ola wia
=]

e
W

% dx
Example 15.: Show that =
P '!,-nztzcosznmb2 sin’x 2ab

R

7 dx
Solution: Let I= j
0 a’cos? x + b*sin’x

J- sin xdx
a? + b* tan’ x

Dividing Numerator and denominator by cos” x

F4

.

0 g +b%tan’ x

Putting tan x =1, sec? x dx = dt



Where x=0,t=0, whenx=“2, f=w

’f .
5 a* cos? x+bzsm x 2ab

Example 16.: Prove that E-x—m-nfn— = 1:(51 T~ 1]
secx x

N
Solution j
0 X+ tanx

_[ Xsinx
1+smx

(Proceed as solved example - 9)

i
Example 17.: Prove that Ilog(l +tanx)dr= Ist-log2
0

)/
Solution: Let I= Ilog(1+ tanx ) dx
0

=Tlog{l+tan(ﬂ4_ )}dx
flg{lﬂ/ﬂﬂ_}

1+tan%tanx

(D)

By property (1v)

Integration

Self-Instructiongl Material
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=?log(l . ‘““”‘)dx

] +tanx

T,

0
7 (1+tanx+l—tanx]-
Ilog

0

- 1+ tanx dx
7 2
=£log(1+mI]dx (2
Adding equation (1) and (2), we get |
2r T?lca 7 2
= | g(1+ tanx)dx + _[[ log[Hmnx]dx

1/
= [ [log(2)] &x
0
=[x]10%‘ log2 = %logz
s I= —g log2

EXERCISE 11.1

Prove the following :

y k18
Q1.: flog(cosx)dx= —Elogz.
0

% (eost)
Q.2.: ‘J]’ (1+Sinx)(2+smx)dx=210g2-log3

1
Q.3.: Itan‘lxdng—-%log.?

dx 1
=2log2——logl0
I+x2 g 2 &

0
2
Q.4.:J’
1
Q.S.:T
0

Q.6.:

Self-Instructional Material -
234



2
xdx _ T a>0

a* —cos® x Za\faz -1

%
Q.8.: I xdx =2 log2
0

L
-]
»
)
S oy 1}

td

l+cos2x+sm2x 16

® log(l + xz)dx

Q.9.: J; (sz)

Q.10.: [ =2 =

=7 log2

7 "
sin” £ xdx T
Q.1L.: j s —dx="
0

®
Q.1z.:j1 EdE e D<a<m
0

= . 2
Q.13.: _[Mzi’-‘-[a-afaz—bz] (a>b>0)
) 0

| I
Q.14.: | “"Tdx=" log2

o x 2

% xsinx %
Q.15.:j dx=— tan™' 2

o 2+cos2x 2

T .

xsimx n -1

Q.16.: dx tan™" q, a<l

‘! 1+acos?x a ( )
Q.17 _}f sinx + cosx dxzzl:— l—l V3 +1
o o cos’x +sinx 4 3 2

Q.18.: I log>—~ " dx=mlog2
+x?

Q.19.: [ log- 2 gx="

Integratii
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Q. 20.

3.12

Note :

: T log-————dx=

xdx L
0 (1 + x)(l + x2) 4
DEFINITE INTEGRAL AS THE LIMIT OF A SUM
Definition 14.1 :If f be a single real valued continuous function of independent

variable x, in the interval [4,b], where b > a and if the interval [a,b], is subdivided
into nequal parts, a+ b,a+2h, a+3h,...,a+(n-1) h, then,

Tf(x)abc =limy_,o [ f(a)+ f(a+ h)+ f(a+2k)

+...+f{a+(n—l)}h]
=lim, o 4] f(@)+ f(a+ h)+ f(a+2k)+...
+..+f{a+(n-1)h}] D)
Whereh=_;—a, or b= a+ nh, is called definite integral as the limit of a sum.
Equation (l)c;lnalsobe wriften as— |

ey =t B0
= lim,_,, hiof((w rh)
Further if %p@): f(x)ie.[ fx)ds = F(x) ten,

T f(x)dx =lim, hg-f(a +rk) =F(b)-F(a)

Integration by summation is also called integration from the first principle or
integration ab initio.

SOLVED EXAMPLES

Example 1 : Evaluate J:x dx as the limit of a sum.

Solution : Here f(x)=x, 9;—a=h

We know that,

f f(x)dx =lim,_, k[ f(a)+ f(a+ k) + fa+2h)



+...+f{a+(n—1)}h]
J':xdx=lim,,_m hla+a+h+a+2h+..a+(n-1)h]

=lim, h[a+a+...ntimes+h{1+2+3---("_1)}]

=lim, ,, h{na+h-@}

F

= lim -nah+h2———n(n—1):|
2

I 1
fpepll-——~

- (b-a) (b-a)’ [ nj

= lim

e M T 2

i

e 2. 1lea 2

=ab~-a +2(b +a Zab)

b -a*

{%7)

RY I

—'2'(” -a’)

Example 2 : Evaluate fxzdr from the definition of definite integral as the limit of a sum.

Solution: We know that from the definition —
b
[ f(x)ds =lim, ., b f(a)+ f(a+ b)+..+ f{a+ (n-1)}A]

Here a=1,b=2 f(x)=x7 p=21.

fl

jfxzdx = lim, ., ;,[12 +(1+ h)2 +(1+ 2h)2+...{1 + (n—-l)h}z]

N

=lim,_,, h[1+1+...ntimes + (1+ 2+ 3+...(n-1)2h

+ h"’(l2 +22 +3%+ . (n —1)2)]

~lim, . h[n Lo —zl)n (e l)r;(Zn -1)J

Integration
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i 1{,Hz.}';.EQ‘_‘_I_)+L,("—1)"6(2"—1)]

n2

1 1
FLENEE
: n
= R~ L
hm-n—’w n ﬂz 2 ﬂa 6
=l+1+~
=2+l
3
.y
3

Example 3 : Evaluate j: e*dx as the limit of a sum.

Solution : By definition we have -

}f(x)dx =lim,_,, A] f(a)+ f(a+ h)+...+f{a+(n_1)}},]

Here a=0,b=2 f(x)=¢", h=""=

=1

_L2 €*dx = lim,_,., h[e° + M g 02 +...+e("”l)"]

4 In-
=lim,,_m-2—[:e°+e}’/’+eA+...+e %]
n

il
o~
1]

[ =)
|
—




5 Integration
Example 4 ; Evaluate L (Jc2 + x) as the limit of a sum.

Solution : By definition we have —
b

[ £(x)dx =lim, ., A f(a) + f(a+ )+..+ f{a+ (n-1)}R]

a

Here a=1,b=2, h=g;—l=%&f(x)=x2+x
f(xz +x)dr=lim, h[(l2 +1)+(1+ 1) +(1+ B) +(1+28)°
#1424, 414+ (n-1)B)" + {1+ (n -])h}]
= lim,_,,, h[l" +12 4124 .n times + 141+ 1+...n times
+h {12422 3%0 (n-1)
+2h[1+2+3+...(n-1)

+h(1+2+ 3+ (n-1)}]

f(x"" +x }dx =lim,_,, h[(n+ n)+h? (n—l)r;(Zn ) +2h (n;l)n

+h-@]

s

=li.tll,,_,,,,,,,l n+ —

n n? 6 n 2
n? 1_1[_1 nz(l_l]

=lim 2n><—-+—1— " " +—3— il
e n n3 6 n? 2
=2+-1-+g

3
B

6

b .
Example 5 : Evaluate L cosxdx as the limit of a sum.

Solution : Here f(x)=cosx. By definition we have —

_Tf(x)dx=lim,,_,,, h[f(a)+f(a+h)+f(a+2h)+...+f{a+(n-—l)}h]

I Ma



elf-
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Ecosdx = lim, ., h[cosa+ cos(a + h) +cos((a+ 2h)+..+cos{a+ (n—-l)h)]

' . nh
a+a+(n—l)h sm?
2 . nh
slu_

it 22 oo 2 o
e A sy

_2x1cos(“;men(3“—“J=sinb—sma

=lim, . A cos(

2

EXERCISE 12 .1
Evaluate the following integrals as the limit of a sum :

Q.l.:}xdx. Q.Z.:j[(xz—x dx Q3. }(x+e )dx
; 3 :
Q.4.:je*dx Q.S.'I;—z-dx Q.s.:jsinxdx
7 % 2
Q.7.: | sec” xdx Q.8.: | sin0d® Q.9.:j(3x2+2x)dx
0 ¢ 1
Q. 10.: Tsinzxdx Q.11.: j(sx-z)dx
a 1]
ANSWERS
w0 I e ”f @ e ® -
V() cosa=cosb () 1 (8 1 ) 10

(10) %(b-a)+—;—(sinacosa-—sinbcosb)

3.13 APPLICATION OF DEFINITE INTEGRAL TO FIND THE
SUM OF INFINITE SERIES.

In previous article we have expressed the definite integral as the Limit of a sum which

is nothing but sums of series as definite integral.
We have



Integration
b L
J‘ f(x)dx = lim,, ., hﬁ f(a+rh)
a r=0

Where b—a=nh
Puttinga=0, b=1, we get

nh=1-0=1, .'.h=l
n

[0y mi L2 1(7)

15.1 Rule to find the sam of the series

First we find the r™ term of the series and express it as I f (%) Then the series can be
n

written as lim,_, Z% f (%) The correspondi'ng definite integral can be obrained

by replacing 7/, by x and% by dx and lim, __, E by L‘ _
r=0

SOLVED EXAMPLES
Example 1.: Evaluate lim___ _1—+_1_+,_,+_‘_]
n+l n+l 2n
Solution : The general terms (1™ tcm):%
n+r
1 1
lim =
n

Putting - =x, and = ds,
n n

when r=h, x=%—>1 as n— w
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L1
A= [ = [tog(1+x)],

=log2 —logl
=log2

. 1 1 l
Example 2.: Evaluate 1 —t——— A —
P e un,,_m{n+1 n+2 6n}

Solution : The given series can be written as

when r=1, x=%—>0 as n— o

Sn
and r=57, x> —=5 n-ow
n

5 dx
I=[ = =[tog(1+x)];

= log6—logl
= log6
) n+1l n+2 |
Example 3.: Evaluate lim + +.. 4+ —
P e [uz +12  nt42° n}

Solution : The given series can be written as

i |: n+l n+2 n+n
PRI ot 420 T nten?
n+n
(Lasttcrm=7—-——2—)
n°+n
n 1+-l— 1+,1_
n n
5t




By putting£=x, and — =dx,
n n
x=%—)0 as n— o

when r=1,
n

when r=n, x— —=1
n

i, o 3

r—;"[ r*

7]
n __ll+xdx

J_ °1+x

2

=

B I‘:l+1x2 dx+'[’ll+xx2
= [tan"x [log(l+x )]

- [tan“-tan“ 0]+ > [log(1+1)~logl]

1
—+ —log2
4 2 6

Example 4.: Evaluate lim,_, 1 [(n+ 1) +(n+2)+...+(n + n)]}/
n

The given series can be written as

i (1) 22

n

A

Solution :

Let

Taking log on both sides, we get —
logA =lim__,_, - [log[l + 1} log[l + 2}(..3: log[l + fﬂ
: n n n

1 r
=lim, > —log|1+—

Byputtingf-=x, and —=
n n

when r=1, x=%->0 (n—> =)

when r=n, x> —=1
n

Integration
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Taking unity as first function and log (1+x) as second ﬁcﬁon and integrating by

parts -
log 4 =£10g(1+x)dx

1 1 x ’
[Ilog(1+x)]0 —Lmdx
1 1
logZ-IO (l—]_-{-_;de

= log2-ﬂdx+£ﬁdx

= tog2—[x], + [log(1+x)].

= log2-1+log2 =2log2-1

= ~1+log4
or =-1+log(2x2)
log4 =-1+log4
or log 4 —log4 = -1\
A
log—=-1
23
A4
or —=e
4
L 4=2
e
. n! S
Example 5.: Evaluate lim, ,, | —
n

Solution: We have
n n(n-1)(n-2)..3-21

n" n"
_[1.2.3 2}
nnn n
hm EI_X'—I lxzxg. .E "
el N T
Let A=hm,,_m[-l—x-2—xi...£] "
n nn n



Taking log on both sides, we get —

logd = 1 [logl + logE +...log£j|
n n n n
=lim,_,,, ilog(ﬁj
r=1 n

Byputtmg——x and l—dx and

when r=1, —/——)O (n—> x)
r=n, x=2=1
n

log 4 =_[; logx

= [xlogx —x]:,
= llogl -1-0
= -1
A= ¢! =—1-
e
EXERCISE 13.1

Evaluate the following integrals as the limit of a sum :

) 1 22 nZ yn
Q. 1.: llﬂlﬂ_,m[l‘}'—zJ{l'}' 7 [T l+—2
n n n

tim o S

n® +r
Q.3.: lim ! + ! + L +..+ !
. " ﬂ—)GD_ (-
2n \Jan? — '\/4n2——4 V3n2 +2n-1
. 13 _ - NP P Ple
Q. 4.:lim,_,, [1 +2%+...n ] P+1
1 T 2 nn
5.:1 —|tan— + tan— +...tan—
Q lm"_mn[ n 4n 4n}

1 n’ n? 1
Q. 6.: lim —+ + +ooi—
,Hm':" (n+1)3 (n+2)3 SHJ

Integration
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. 1 1 1 1
. 7.: im —+—+ +...
¢ "—m[n n+l n+2 n+2n}

-
) n n n 1
Q.8.: lim —+ + +...
Tt p2 422 oy 4? n® +(2n --2)2

Q.9.: lim, | —5sec ——-+——sec — .
n? n n

p A N
—-1? 1+~J [1+3;] ..{1+%}4

n n

-
Lsec? 4 Z sec? 2 lseczl}%tanl

ANSWERS

(1) 2e" 7 @-1+v5 @ I @ - (5) 310g2
6 p+1 T

3 1 1 7
(6)§ 7 log3 8) Stan 2 (9)Etanl (10) e—

Self-Instructiongl Material



4 Consumers and
Producers Surplus

Chapter Includes:
1. Copsumers' Surplus
2. Producers' Surplus

4.1 CONSUMERS’ SURPLUS

A demand curve for a commodity shows the amount of the
commodity that will be bought by people at any given price p.
Suppose that the prevailing market price is p,. At this price an
amount x,, of the commodity determined by the demand curve will

Consumers and
Producers Surplus

Self-Instrectional Material
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be sold. However there are buyers who would be willing to pay a
price higher than p,. All such buyers will gain from the fact that the
prevailing market price is only p,. This gain is called Consumers’
Surplus. It is represented by the area below the demand curve
p = f(x) and above the line p = p,,.

Thus Consumers’ Surplus, y
CS = [Total area under the
demand function bounded by E cs
x =0, x =X, and x-axis — Area '
of the rectangle OAPRB] B P x)
Po
-~ CS = ,_If(ﬁl)dx-—pox0 o % A >
Quantity
Fig. 4.1

Example 1

Find the consumers’ surplus for the demand function
p=25- x- x> when p, = 19.

Solution :

Given that,

The demand functionis p =25 —x — x*
p, = 19

19 =25 —-x—x?

= XxX*+x-6=0
=2 x+3)HEx-2)=0
= x=2 (or) x=-3 X
: Xy =2 [demand cannot be negative]
Py X, = 19x2 =738
CS =’jrf(}ii)dx—pg1'{0
0
2
= [(25 - x~x%dx - 38
0
_ A
= [osx-x-2] -38
=125 -2- % 1-38 = 2 unis
Example 2

The demand of a commodity is p = 28 - x* Find the
consumers’ surplus when demand x, =5



Solution :

Given that,
The demand fuaction, p = 28 — x2
whenx, =5

p, =28-—25
=3
<Pk, =15

CS =’jrf()()dx—pux0
3 ‘
5
= [(28 — x?)dx — 15
0

= [28x—= —15
[28x— 2]’

= 28 x5 2227 - 15 = Zunits

Example 3

The demand function for a commodity is p = 123 . Find

the consumers’ surplus when the prevailing market price is 2.

Solution :
Given that, Demand function, p = ;33
po=2 = 2 =i
or 2x+6 =12 or x =3 . x;,=3 = px,=6
3
- _ = [-12 -
CS -;rf(x)dx PoX, ""(J;x+3dx 6

12 [og( x+3)1}— 6.
12[log 6 —log 3]—-6 =12 log% —6=121og2-6

4.2 PRODUCERS’ SURPLUS

A supply curve for a commodity shows the amount of the
commodity that will be brought into the market at any given pricep.
Suppose the prevailing market price is p,. At this price an amount
X, of the commodity, determined by the supply curve, will be offered
to buyers. However, there are producers who are willing to supply
the commodity at a price lower than p,. All such producers will
gain from the fact that the prevailing market price is only p,. This
gain is called ‘Producers’ Surplus’. It is represented by the area

Consumers und
Producers Surplus

Self-Instructipnal Maleral
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above the supply curve p = g(x)
and below the line p = p,. Ay
Thus Producers’ Surplus,

PS = [ Area of the whole rectangle
OAPB — Area under the supply

=
8
3%

curve bounded by x =0, x = x, o Po
and x - axis] £
= PS =pyx, - Tg(X)dx o) n A e
0 Quantity
Example 4 Fig4.2

The supply function for a commodity isp =x2 + 4x + 5
where x denotes supply. Find the producers’ surplus when
the price is 10.-

Solution :
Given that,
Supply function, p=x2+ 4x + 5
For p, =10,
10=x2+4x+5 =2x2+4x-5=0
= E+5)E-1)=0= x=-5 or x=1
Since supply cannot be negative, x = —35 is not possible.
x=1
p,=10andx,=1 = px,=10
Producers’ Surplus,

PS=p.x, — Tg (X) dx
)

1
=10— [(x* + ax + 5) dx
0

3 2 !
10 - [+ 42+ 5x],
=10 T L = & ni
=10—] 3 +2+45] = 3 units.

Example 5

Find the producers’ surplus for the supply function
p = x>+ Xx + 3 when x,=4.

Solution :

Given that,
supply function p = x%2 + x + 3
whenx, =4, p, =4 +4 +3 =23
S PoX, = 92.

Producers’ Surplus

4
PS=pyx, - Tg(X)dx =92 - [(x®+x+3)dx
0 0



=92 - %i+z,§+ 3x]: |
=92 -[$4+18412]= 1572 units.
Example 6
Find the producers’ surplus for the supply function
p = 3 + x2 when the price is 12.
Solution :
Given that,
supply function, p = 3 +x2. When p, = 12,
12=3+x%2 or x2 =9 or x=+4+3
Since supply cannot be negative,
x =3. e X, = 3,
<. PgX, = 36.
Producers’ Surplus,

PS=px, — Tg(x)dx
30
- 26 _ 2 _2g x3 P
=36 £(3+x)dx =36- [3x+ 3]0

=36 — [9+ 331—0] = 18 units.

Example 7

The demand and supply functions under pure
competition are p, = 16 - x? and p, = 2x? + 4. Find the
consumers’ surplus and producers’ surplus at the market
equilibrium price.
Solution :

For market equilibrium,

Quantity demanded = Quantity supplied
= 16 -x2 =2x2+4 = 3x% =12

= x:2 =4 = X =+2 Butx = -2 is inadmissible.
SX =2 (1e)x,=2
p, =16 -2y =12

PoX, = 12x2 =24.
Consummers’ Surplus,

CS = Tf(x)dx — PoX,
0

2
f(16 - x?) dx ~ 24
0

= [16x—l§-'- —24 =32- 8 - 24 = L8 uniss

Producers’ Surplus
PS =px, — Tg(X) dx
0

Consumers and

Producers Surplis

tal
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11)

12)

13)

14)

15)

16)

17)

18)

2
=24~ [(22+4)dx =24- [%+4x]:
0

_ _2x8 _ 32 .
= 24 === 8 = 3 units.
EXFERCISE

The area of the region bounded by y = x + 1 the x - axis and
the linesx=0and x=1is

@ 3 (b) 2 © 3 @ 1

The area bounded by the demand curve xy = 1, the x - axis,
x=1and x = 2 is

(a) log 2 (b) log —é— (©)2log2  (d) 7,1,_— log 2
If the marginal cost function MC = 3¢ **, then the cost function is
3x
(a) %— (b) e**+k (c) 9e3* (d) 3e*

If the marginal cost function MC = 2 - 4x , then the cost function
is

(a) 2x—2x2+k  (b) 2-4x?" () %— 4 (d) % —4x?

The marginal revenue of a firm is MR = 15 — Bx. Then the
revenue function is '

(2) 15x—4x2+k  (b) -1% g (c) -8 (d) 15x — 8
1

then the revenue function is

x+1 ]
© Gepz Dlog3g

The consumers’ surplus for the demand function p = f(x) for
the quantity x, and price p, is

(a) T f(x)dx — p,x, (b) T f(x)dx
0 0

The marginal revenue R(x) =

(a) log b+ 1l + & (B) -7y

(©) Pory- | T @ [ £ ax
0 0

The producers’ surplus for the supply function p = g(x) for the
quantity x, and price p,, is

(a) ’Ig(X) dx — p,x, (b) pX, - Ig (%) dx

Po .
(c) )Ig(X)dx (d) lg(x)dx



5 Matrices and Determinants

Chapferincludes:

Matrices to describe NETWORK

Order of a Matrix

Types of MatriCES

Algebra of Matrices

Transpose of a Matrix

addition and subtraction of matrices

Multiplication of Matrices

Symmetric and Skew - Symmetric Matrices Orthogonal Matrix
Nilpotent Matrix

Periodic Matrix

. Idempotent Matrix

. Involutery Matrix

. Determinant of a Square Matrix

. Singular and Non-Singuiar Matrices

. Minors and Cofactors

. Expansion ofa determinantS

. Elementary Properties of Determinants

. Application of Determinants

Adjoint of a Square Matrix

. Inverse of a Matrix

. Elementary Operations on matrices

. Echelon form of a Matrix

. Solution of System of Linear Equations by Matrix Method
Solution of System of Linear Equations by Elementary
Transformation (Operations)

LR R W

[\ I NG T N T N R e T R R Sy
LU N =W NSk WN—-O

INTRODUCTION :

Whenever we perform a journey by train/bus, we go to railway station/bus station and
see the time table of trains/buses for our destination. The time of arrival and departure of
traing/buses along with destinations are arranged in a rectangular arrays.

Matrices and
Determinants
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The student seating in class/examination half, the cadets in parade ground, the
price List of different articles in a shop, the ~ r—‘—ﬁ—“ ‘
days and dates in a calendar are arra gedina | oer
rectangular arrays (rows and column). SUN 05|12 19 | 26 |

The table is the shortest method of finding |- 06 | 13 | 20 | 27
a lot of information. The information can be |- 07,14 21,28
written without heading as shown below : jwep) 01081522129
™u| 02 | 09 | 16 | 23 | 30
FRI | 03 | 10| 17 | 24

o oo m——

sar (04 [ 111825 |

Let us consider the following table

Seating arrangement of students in an

examination hall,
1|6 11 6
|2 7 12 17 22
3 8 13 18 23
4 9 14 19 24
5 10 15 20 25 |
(1i1) Price list of articles in three shops (in paise).
Shop
A B |C
Articles X
Tea ‘ 40 |42 |44
Sugar 60 62 |64
Milk 42 |44 |46
Sliced bread 10 B 2 15

The above irformation can be written as :
Let us write the above information in the square brackets for good looking :

16 11 16 21
SR E.E B
38 1318 23

49 14 19 24 42 44 46
510 15 20 25 1012 15
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1 6 11 16 21 © o 4
2 7 12 11 2
3 8 13 18 23| and 3(2} Z Tﬁ
4 9 1419 24 o b1
5 10 15 20 25

The rectangular arrangement of numbers inside the square brackets (more precisely
brackets), is called Matrix,

MATRICES TO DESCRIBE NETWORK
Let us consider these cities A, B and C which are connected as shown in the figure.

It is seen clearly, that there are three routes in going

from city A to city B. There is no any route from city y
Ato A, and city B to B, but there are routes from city
Ctocity C.
Let us denote no routes, one route, two routes, and A
three routes by the numbers 0, 1, 2, and 3
respectively
To To
A B C A B C]
Al0 3 | A0 3
g g
s B|3 0 2 g B3 0 2
Selio2 o cll 2 1]

The above information can be represented by a matrix, which tells that matrices are
the storage of information.

Clearly it is known that the geometrical model has been converted in to arithmetical table.
There are so many such examples which can be obtained from our practical life problems.
Definition 1.1 ; A rectangular array of numbers having m and n-columns which
represents m x n elements, is called a matrix of order mxn.

The matrices are generally denoted by capital letters and their elements by small
letters of English alphabets. '

The m x n elements of a matrix can be written as :

" Matrices and
Determinanis
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5.2

5.3

all a[z a13 xinsvrran ai"---aln

Q) @97 Qg3 oeeeneene ag...ah
A=

ﬂﬂ aiz 013 ......... aa‘ e aiﬂ

Laml a,ﬂ ﬂms ...... amj am-mm

here a;; represents three elements of i" row and j* column. The suffix represents

tow and suffix ' represents column. Thus (i /)" the element of first row are
((e,1,a1,---,a;, ] and that of first column are :
‘ a

ay

a4y,
The Matrix A, can also be written as 4 =[a;;] e
where i=12....m and
i=12..
The horizontal ]Jnes (-) and vertical lines (4) in the matrix are called row (row
vectors) and cofuron (or column vectors).
ORDER OF A MATRIX
The order of a matrix having m rows and » columss is m x n.

For example

The element '11' occurs in third row and second column.
2 4 6 |

Let4=|7 8 10| isa3x3matrix, (as it has three rows and three columns. Here
5 1 134, ,

the element '11' occurs 1n the third row and second column.

TYPES OF MATRICES

(i) Horizontal Matrix : A matrix in which the number of rows is less than the number of

columns, is called a Horizontal Matrix.
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For Example : [6 . 9} is a horizontal matrix because it has three rows and two

columns.

(i) Virtical Matrix : A matrix in which thé number of rows is mere than the number of
columns, is called a Virtical Matrix.

For Example :
a a, a
by b, b
Cl’ €2 G
d dy d

is a virtical matrix because it has four rows and three columns.

(iii) Square Matrix : A matrix in which number of rows is equal to the number of
colums, is called a square matrix.

The matrix A =[a.g’.]m is called a square matrix if and only if m = n, we write-

6. 7 8
1y 3 AN
And B=[4\5] or D=2 "4_ 5
2x2

9 3 11},
11,8125 a,-j,al,,
QU819 50nese00y Gy )
A= is asquare matrix of ordern(or nxn)
85138y e awjnm
are examples of square matrices.

 Diagonal elements of 2 Square Matrix : The elements [4,1,a,,, a3 ] in B, the
element [1, 5] ia C and [6, 4, 11] in D are the diagonal elements if these squares
matrices. the diagonal elements of A are [4;,4;5,..., Gy | 35 [a1; ]

(vi) Zero or Null Matrix : A matrix in which all the elements are zero, is called a zero

matrix, or & null matrix.

§ 000
: - 000
Example :[0] ., [0, 0] ,, .[0 0 0} ,]000

. 23 1000 23
are the examples of null matrices. | |
(vii) Diagonal Matrix : A square matrix in which all the elements are zero except the

diagonal elements |

i

Matrices and
Determinants
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Example :

3Ix3

2.0 0O
AN
A=|0 § \0
0 0 8 xl
15 an example of diagonal matrix.
Particular Cases : The diagonal elements of a diagonal matrix may also be zero.
For example |
0,0 0
00 00 N
A=) \ , B= , C=i0 0.0
0 5 2x2 0 0 x2 0 0\0

are also diagonal matrices, while their diagonal elements are zero.

Scalar Matrix : A diagonal matrix in which all the diagonal elements are equal, is
called a scalar matrix.

Example :

3.0 0 00

4.0 N
A=| \,h B=[073 04 C=l0 0
0 0 3 0 0

o O o

are scalar matrices as the diagonal elements is A are 4, in B are 3, and in C are 0.

Identity Matrix : A diagonal matrix in which the diagonal elements are equaito 1,
is called an identity matrix or unit matrix. An identity matrix is denoted by I.

) S L
10 N
Example: 11 = [l]l)d’ 12 = 0 1 N 13 = 0 1 0
b 0 0 \ 1 3x3
are identity matrices.

Note : An idenfity matrix is a scalar matrix as well as a diagonal matrix.

Triangular Matrices : Triangular matrices are of two types :

(a) Lower Triangular Matrices : A square matrix in which the ¢lements above the main

diagonal are all zero, is called a lower triangular matrix.

Example :
2.0 AN
[N [ ; ]
e 4 6 7):1

are lower triangular matrices.

=



. . o ) . Matrices and
(b) Upper Triangular Matrices : A square matrix in which the elements below the main Determinanis

diagonal are all zero, is called a uper triangular matrix.

Example : 2 4 g |2 3
2 3 AN

SARENINS N7

Ix2 0 0 7 0 0 3

are upper triangular matrices.

5.4 ALGEBRA OF MATRICES
5.4.1 (i) Equal Matrices : Two matrices 4 = [aij],B = [ b; Jare said to be equal, if they
have the same order and having the corresponding elements equal.
A=[a;] . B=[5] .,
the A =B, if a; =b; (i ) element of A is equal to (7, /)* element of B.

Note : Same order means number of rows and the number of columns are equal in both the
matrices.

5.5 TRANSPOSE OF A MATRIX

A matrix which is obfained by interchanging rows and columns of a given matrix is
called transpose of the matrix.

The transpose of a matrix A is denoted by 4’ or AT,

1 25
Example: Let 4 = [7 g 9} , then by interchanging row and columns of A,

17
1 25
Wegetd =2 8 Nowiran.sposeofA'z{7 " 9}=A
5 %0

Thus, the transpose of a transpose of a matrix, is the matrix itselfie : (4') = 4

Thus we see that in the matrix A, the number of rows 2 changed to three rows in its
transpose, and number of columns 3 are changed to two columns,

5.6 ADDITION AND SUBTRACTION OF MATRICES

(a) Addition of Matrices : If A and B are two matrices having the same order, then they
can be added and the resulting matrix can be obtained by adding the corresponding
elements of the matrices A and B. The sum is denoted by A + B.

3
for if A=[ 7 4}
2t 2x3

|i905}
23 4, Self-lnstractional Material
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(b)

349 740 445
then A+B[+ * +}

“1542 243 —144

1279
—l:.’ 5 3:]2x3
Inpatticular,if  4=[a;] , B=[b;]

Subtraction of Matrices : In subtraction of Matrices of the same order, the difference

of corresponding elements are obtained and the order of the resulting
matrix is same as the order of the two matrices. .

2 4 1 3
For if A=[3 6 B=12 5§

5 Tlya 4 6|,

1 1
=(1 1
! 12x3

Inparticular, if . A=[q;] , B=[ba‘]m |

then A-B =[a!.,. -by]

mxn

5.6.1 PROPERTIES OF MATRIX ADDITION :

Property (i) : Matrix addition satisfies the commutative property,
As A+B=B+4

If A=[ag]; B:[bg]
then (3/)" element of A+ B=[a; + b, Jand of B+ 4 =[b; +4,]

which are same as gy zd b; are numbers and satisfy the commutative
property of addition. _ .




Proof (i) :
Let  d=[a] B=[p;] then
4+8=([a,]+[8,]) =[a; +2,]
' = [b!.‘f + a,.j] (Addition of numbers is commutative)
= ([by] + [ayD
=B+ A4

Property (ii) : Matrix addition satisfies the associative property,
ie A+(B+C)=(4+B)+C

if 4=[a;]; B=[b;] and C=[c;]
then (i /)" element of 4+ (B+ C)willbe a, +(b, +c;)
and of (4 + B)+C is[(ay +by)+¢;)]

Proof (ii) :

Let C=[c,-j], then

(A+B)+C =([ag-]+[b,j])+ [cg]

=[ay +8y]+[c;] By definitionof 4+ B)

=[(a; +b;)+cy]  (Addition of numbers is associative )

~[ay]+[by + 4]

- [a‘;,-]+ ([bij + c!fD

=4+(8+C)

Property (iil) : Existence of Identity for Matrix Addition

If A be a matrix of order m x n, and O be null matrix of he same order m x n, then

A+0=0+4

i 00
For A=134 0=0
_5792,(3 0002"3

134 [000
A4+0=
Then 75 s 79]"{000}

140 3+0 4+0
§+0 7+0 9+0

i
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5.7
5741

134
579
g 11
And O+A=00 + 34
000| |579
0+1 0+3 0+4
b0+5 0+7 0+9
*‘134]
L579b<3

A+0=0+4

Proof (iv) : Existence of Additive Inverse

For every matrix A, there exists a matrix B of the same order that of A, such that
A+B=0=B+4 '

Where O is 2 null matrix whose order is equal to the order of A {or B).

B is called additive inverse O or negative of matrix A.

Proof (v) : Cancellation Law for Addition of Matrices

If A, B, C are three matrices of the same order then

A+B=A4+C=>B=C (1)

And B+ A=C+4A=>B=C 2)

Equations (1) and (2) show left cancellation law and right cancellation law
respectively.

MULTIPLICATION OF MATRICES

Multiplication of Matrix by a Scalar : Let A be any matrix of orderm x n and &
be a scalar (Complex or reat). Then the matrix k4, which is obtained by multiplying
each element of A by the scalar k is called scalar multiple of A.

Example :
Let A=[a,-j]
T
an alz au . ag; ven aln
021 022 023 e azj . az,,
A=\a; a5 a; aj; 8in
Laml amz am] wen a”y- am-




.......

Then kd=

Ky Ko K .. . K
nA=[ay]  then kd=[ka;]

2 -1
Particularly, If k=3, and A=l: 5]
23

6 7 8
-1 3
Then 3A=[3XI 3¢ XS:|
3x6 3Ix7 3x8 23
_l:3 -3 ISJ
18 21 24 2.3

§.7.2 Properties of Multiplication of 2 Matrix by a Scalar :
(i) Scalar Multiplication is distributive over matrix addition. For, if A and B are any
two matrices of the same order, then
k(A+B)= k4 +kB
(ii) For any two scalar r and s and the matrix A of any order m x n, then
(r+s)dA=rd+sA and
r(sd)=(rs)4
(iil) For any matrix A of order m x n and scalar k
(-k)4 = ~(k4) = k(- 4)

(iv) For any matrix A of order m x a.

(@ 14=4 b) (-D4=-4
(v) Forany two matrices A and B _
~{4+B)=-A-B

5.7.3 Multiplication of a Matrix by another Matrix :

Two matrices 4 and B can be multiplied if the number of columns in 4 is same as
the number of rows in B. And as such the matrices are said to be conformable for
multiplication.

If A be matrix of order m x nand B be matrix of order # x p then (Product) 4B can be
bti db tBA tb bti d

Matrices and
Determinants
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{he product of Matrices 4 and B of ordcrs mx nand #x prespectively denoted by
isorordermx p for

d=lo;],,,, B=[ts],, then C =[°ﬁ].,p
is given by - '
cy = iqybu =auby +apby + ... a,by
= :

c!_’, :aﬂbil = a‘-zbzk +... a,-,,b,'lk

=£agbﬁ; i=l2.mk=12... p

J=1
= a;b, where i the dummy suffix.
Diagrammatically
_ i ra"au ..... Oy bll'--bik"'blp
C“...Clk...clp
C”...C&...Cip = dﬂdn...ay...a," bjl“'b}l'"'b_m
_cmf"'cm.k"'cmp_ Seeesresarasiesir s .
| mlamz d ;'ami Lbnl bnk b

Thus, to obtain c,k, we multiply each element in the i* zero of A by the comespondmg

elements in j* coluran of B and find the sum of all the terms. matrix product AB,A
is called pre-multiplier and B the post multlpher
Particularly, if

346 I 3 4y
A=[12 0] and B={5 9 4
3 3-26

1200, (5 , 6l

{33+ 4S546x3 1x3!-4x9+6x(-—2) cdt Ax A+ 6x 6
" 1k 26 +0x 3 Ix3H2x%M0x(-2) b4+2x4+0x6

_{41 2 64]
1121124, ,

5.7.4 Properties of Matrix Multiplication :

oy 1 3 4
Now AB:[ ] 5 9 4

(i) Associative Property : :
For the matrices A B C of order mxn nx pand px r respectively then



(4B)C =(4B)C
(ii) Distributive Property :
For the matrices A, B, C of order mxn, nx pandnx p
A(B+C)=AB+ AC
i, e. Multiplication distributive addition.
(iii) Matrix Multiplication is not always commutative :

i.e. If A and B are matrices such that AB and BA isdefined, thenitisnot  necessary
that AB=BA

12 -7 2
w o ash e
3 4], 1 4],

Since the both matrices have the same order, therefore AB and BA both are defined.

Further - . _ )
4po| 72 28] -5 10
~21+4 6+16]° |-17 22
BA— -7+6 -14+8| |-1-6
|1+12 2+16| |13 18
Clearly AB#BA ' |
Note : (i) If AB = BA, then A and B are said to be-commute.

(i) If AB =-BA, the matrices A and B are said to be anti - commute.

(iv) The product of two matrices A and B can be a zero matrix, it does not meant that
~ either A or B is a null matrix or both the matrices are null,

i. e. AB = O does not mean that either A= 0 or B = O or both be a zero matrix.

For A-Ol' B—3 4
e 20 T lo o

_|0x3+1x0 0x4+1x0
“[0x3+2x0 0x4+2x0
- 00 - . : .
;[0 0] Thus AB=0, i.e. the product of two non-zero matrix is
_ azeromaﬁx.
5.8 SYMMETRIC AND SKEW - SYMMETRIC MATRICES
5.8.1 Symmetric Matrix :
A square matrix is said to be symmetric, if it is equal to its transpose.
If 4 = A' then the square matrix of A is said to be symmetric.

Aatrees g
Flcter aareanids

Seff-Imagructivnel Meterial

N



Kusiness Mathematics

Soff-fmatractiona] Marerial
266

Ekamp!e:
2 4
Let 4= then A'=2 4
4 8 4 8

'+ A= 4’ and consequently A is 2 symmetric matrix.

b b, b b by b
If A=|b, ¢, a,| then A'=\b ¢, a,
by ay ay by a &
Hence A is symmetric.
a h g a b g
A={h b g then A'=h b g
g J ¢ g Jjc
512 512
And A={1 3 4}, then A'=|1 3 4
24090 240

are examples of symmetrical matrices.
5.8.2 Skew - Symmetric Matrix :

A square matrix. is said to be skew-symmetric, if its transpose is equal to (~1) times
the matrix.

If A s square matrix, and if
A = -4, then A is called skew symmetric.

0 A~ g|{0 a b 0 -4 -6
Example{-k 0 fli-a O ¢ jand} 4 0 8
~g -f 0]|l-a -¢ O -6 8§ 0

are example of skew-symmetric Matrices.
Note : It is clear that the diagonal elements of a skew symmetric matrix are all zero.
(Let A'=4,and A= [ay] then A'= [aﬁ], as A is skew symmetric.
or 2a;=0
For diagonal elements i =
soLe a; =0

Gy =ay =08 - Oy =0
5.9 ORTHOGONAL MATRIX

A square matrix is said to be orthogonal if § the product of matrix and its transpose is
equal to an identity matrix of the same order.
If A be a square matrix such that 44" = I then A is said be orthogonal.



sine  cosc
Example : Let 4 = i

~COSQL  SInQL

e sing. —cosa

cosq  sing

sine  cosa [ sing —cosa
Now, 44’ = , )

—COSCL SinQL || cosa  sina

sin?o +00s°@ - Sino cosol +cosa sinu}

| —COSQL SN + SINQL COSQL cos” ¢t + sin’

10
= ]zf
01

5.10 NILPOTENT MATRIX

A square matrix A is said to be nilpotent matrix of index n, if 4* = O, where O is null
matrix of the same order as A.

In particular if 4% = O, then matrix A is called nilpotent matrix of index 2,

00
Example: 4= L 0}, is a nilpotent of order 2.

5.11 PERIODIC MATRIX

A square matrix A is said to be periodic of period k, if 4**!! = 4, when k is the least

positive integer.
1 -2 -6

Example: A=|-3 2 9| is periodic of pertod 2.
2 0 -3

5.12 IDEMPOTENT MATRIX

A square matrix is said to be idempotent if is square is the matrix itself .
Let A be a square matrix such that A = 4, then it is called idempotent matrix,

2 -2 -5
Example :The matrix 4=|~1 4 5| is an idempotent matrix
1 -3 -4

5.13 INVOLUTERY MATRIX

A square matrix is said to be involutery if its square is an identity matrix of the same
order.

If A is a square matrix and if 4> =/ then A is called involutery

Matrices cnii
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Example1: Let 4 =[

0 4 3

Example :The matrix 4=|1 -3 -3 isan involutery matrix.

-1 4 4

SOLVED EXAMPLE

- /
0 -tanxf2l 1 theidentity matrix oforder 2, then
tanx /2 0
provethat I+ 4=({1- A)[cosx —smx]
seCx COSX

X

0 -tan—

. 10 2
Solution: I+ 4= 0

WlanX o
2
1 —tanl
) 2
tan> 1
2
X
0 -tan—
10
(I—A)=[0 J_ 2
tan> 0
2
1 - tanl
) 2
—tanr 1
2
1 X
cosx —sinx 2| [cosx —sinx
Now, (I-4) = - osx
SCCx COSX tang- 1 Sin. ¢

- tan% coSx+sinx + tan% SinX + COSX

) i x
_[oosxﬂan’/2 sinx mnx+tanécosx}

2 X . 2X sinx /2 . X X . X x snx/2 12X .2 X
co§“——sin” =+ x 280~ cOs—, —28IN—XCOS— + {cos” ——sin” —)
2 cosx/2 2 2 2 cosx/2 2 2
_tanx/Z(msgi_ in? £y + 2sinZcos >, SI0X/2 o sin® cos® + cos? X —sin?
cosx/2 2 2 2 2 cosx/2

2



' i’ %)
2X 2 X
COS“—+sin“ — -25111 cos—+sm xcos -
2 2 2 2 cos’/
= . . 3x
gin
—smfcos~+ /2+23in£cos—- 2sin® = + cos® sm"‘i
2 coszxz 2 2 2 2
sinx/2 . ax X x
— jud fud 1 —tan=
- cosx /2 (sin 200S 2) - 2
sinx/2 (sinzfcoszi) sin® % + cos? = tank 1
Lcosx /2 2 2 2 2 2
EXERCISE 1.1
. Construct a 3x4 matrix whose elements are :
@) a;=2-j () ay=i+j (@) gy== @) aq i-é
x-y 2x+z -1 5
If 4= = , find x, y,
[Zx-—y 3z+20:l [o 13} nhE

2 3 3 4
IfA=[0 J and B=[2 1].thtmprovethat (ABY = B'A’ where 4' and B’

are respectively transpose of matrices 4 and B.
Show that the elements on the main diagonal of a skew-symmetric matrix are al} zeros.

2 0 1
If f(x)=x*-5x+6 find f(4)if4=|2 1 3
1 -10

If A be a square matrix, show that%(A + A')is a symmetric and %(A — A")is a skew
symmetric matrix. |

3 -4
Ifd= |i {1 ] find 4> and show by mathematical induction that

A,=[1+2n ~4n

- Zn} for every positive integer n.

B sind
4= "1 50d 42 and show by mathematical induction that
—sin® cos@

e __[cosne sinn@

. fi itive i .
_sinnd cosn 9} or every posifive integer n

Determmarns
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¢ 1 0 6 0 O
9. If4={0 0 1|, B=|{l 0 0 [findABandBAandshowthat4’B+B*4=4.
0 0 0 01 0
5.14 DETERMINANT OF A SQUARE MATRIX
Every square matrix 4 = [a,j] is associated with a number called determinant of A,

and denoted by del A or [A[ or Iay| and sometimes also by the symbol A.
Thus only the square matrices have their determinant.

5.14.1 Determinant of 1x1,2 x 2 and 3 x 3 matrices :

() Let 4= [a]l,=1 matrix
Thendel 4 =|4|=|d=a

(i) Let A.—:[aij]zxz___[an au]

ay  an
a a
Then delA=|A]= it 12 '—_va“xan"‘alz Xazl
ay ap

4y 4y 4ap

(i) Let d=[a;] =lay @y ay| then

3Ix3

Gy Gy 33 )y,
a4 dp
de‘ A =IA| = a;“ 022 aB
Gy 4y A4y

a a da ] 023 azl an
=4y “ 23“'12 ’

+a13
a3 a4y a3 a3y ay 4y
= an(“zz ay3 —dyn 032)““12(021 a3 —an “31)

+“13(“21 Gy _*“22 “31)

5.14.2 The determinant of a diagonal matrix : The determinant of a diagonal matrix is

equal to the product of diagonal elements.
2 © 0

For AZ_O 4}&1311 det A=E 2 =2x4-0x0=8
30 0 0

and B={0 4 0}, then det B=0 4 0
0 0 5 0 5




4 0 7
det A=3 -0 +
5 5 0
=3x(4x5-0)-00x5-0}+0x(0-0)
=3x4x5 '
Thus in general if...
a” 0 0 0 a“ 0 0 0
4= 0 ay, 0 0 than del 4 = ay 0 0
0o 0 .. .. 0
0 ... ... a, P A

Then det A = a; X ay, X as3 X... a,,, Which is the product of the diagonal elements of
the Matrix A.

5.15 SINGULAR AND NON-SINGULAR MATRICES

5.15.1 Singular Matrix : If the value of the determinant of a square matrix is zero, it is
called singular matrix, :

If 4 be a square matrix and 4] =0, then 4 is called singufar matrix.

4 6 4
Example: 4 = ] |AI=L 6|=4x3—2x6=12—12=0
23 3

2 3

[4 6 12] 4 6 12
B=|4 8 16| for del B={4 8 16

|6 10 20| 10 20

[,

L 3—8 16| |4 1+124 8
o 200 6 2 1

=2(8x20-16x10)—64x 20 -6x 16+ 12(4x10-8x6)
=2(160—l60)—6(80—_96)+12(40—48)
=2x0-6x(-16)+12x(-8)
=+06-96
=0
are singular matrices.

Note : the determinant of singular matrix have a single value equal to zero irrespective of

its order.

5.15.2 Non- Singalar Matrix : If the vafue of the determinant of a square matrix, is not
equal to zero it is called a non-singular matrix.
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[f A 13 a square matrix and if del A or |4, is not equal to zero it is called non-singular
matrix,

6 4 |
Example: 4= {2 8] is a non-singular matrix.

asdetA=(A|.—;E ;t=6x8—4x2_

=48-8=40+#10 A
Note : the determinant of non-singular matrix can have any value other than zero.
5.16 MINORS AND COFACTORS
5.16.4 Minor of au element of a determinant ;

Consider the square matrix A=[q,| thenits detefminant Al=la;
i byexn j

r

a,, 4ap e
a a a
21 22 2
Now 4 =/, " (D)
_anl anZ amn_

The (i, j)™ element is a;;. If we supress the elements of first row and first column, in

the above determinant then we get a determinant det B, (A,) whose order is less
thanone that of the determinant A. If| 4] is of order n, then the order of the determinant

B (4)) will be (n—1).

dyy 023 vee Qo
a a e a
— _[*32 33 in
Then detB=A =
082 ans ree am

This determinant A, is defined as the minor of the eléme_nt ay; -

Definition 16.1 : Thus minor of an element is defined as the determinant obtained by
deleting the elements of the corresponding row and column in which the element lies.
The minor of element a; can be obtained by deleting the elements of the j *row and

j™ column. The minor of the element, as of 2 determinant is denoted by M;.

5.16.2 COFACTOR OF AN ELEMENT OF A DETERMINANT

The cofactor of an element is defined as the product of (~1)"*/ and its minor. If M;

be the minor of a;;, then its cofactor Cy is given by :.
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C; =(-1)*/ M, i, andj represent the corresponding row and column inwhich

element lies.

Note :if i+ j =even number the cofactor of the element is same as its minor. If i+ j =odd,

then(c,-j )IS negative for corresponding minor.

Exampte : Find all minors and cofactor of the determinant.

a b ¢
4=Aa=l m
P q r
. : m n
Solution : Minorof 2 =M =
g r

m n
qg r

Cofactorof a =¢;; =(-1)'*!

m—
g 1

Here M|, and C,; means minor and cofactor of the element of first row and first

column respectively.
[ l [
Minor of b=M, = " , and Cj, =(-)** . 54{ m‘
pr p ri |pr
! I ml || m
MiIlOl' Of C =Ml3 = " ' and CU =(—1)1+3 =
P g P 4 P 9
b b q b c
Minorof /=M, = “ , and C, =(~1)*! =
q r g r| g r
, a ¢ 2@ 4 @ ¢
=M = = --1 =
Minor of m = M,, Pt and C,, =(~1) o A p
a B |a
Minorofn=Mz3=a 1, and Cy =(-1)"* = b‘
r 4q P q P 4
b b ¢ b ¢
Minorof p=My = |, and Cy =(-1*'[ ©|=
m nJ m n |m n
X a ¢ a c| la ¢
Minorof g=M 4, = Lol and C,, :(_1)3‘*21 m:‘{l i
X a b a8 b ja b
= = =(-1 =
Minor of r =M, e and C;y =(-1) R ol P

Now, it is easy to define the value of the determinant 4] = |a,-j| of order n, by
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4| = Azé(—l)‘” a; M,

| =Za,-j Cy (1)

=1
When M ; and C; respectively denote the minors and cofactors of the elements a;;

In the expression (1) the summation j =1, ...n. shows that the determinant has been
expanded along i row.

If the determinant is expanded along % column, its value will be given by ;

i+ j
A=0=63(-1) o
=1

n
22i+j a; C;
i=1

The value of the determinant is not affected by expanding it along any row or column,
this can be verified by the following example.

5,17 EXPANSION OF A DETERMINANTS

Let us consider a determinant of order 3 of a square matrix -
811 G 43
A= [‘1:3;']3,(3 =9 8n 9n
43 4y a4y
a4 4y
det A= |A| = au 022 s
Gy Gy 4y
Now, to expand the above determinant we assign the sign to each element. The first

element a, is assigned the + sign and a;, assigned — sign. a; is assigned +signand
so on. This assignment is made for the element of the column too.

o) ap ap
Thus wehave del A =|d|=A=ay a3, ap

63 a4y a3
Inthe expression of the above determinant along any row (or column, the element of
the row (or column) are written with the assigned sign and then multiplied by their

corresponding minors, The expansion along first row, of the above determinant is
given below :



a, a a, a a, a
2 9n 2
A=a, 2 1 9 21 %n

—a; +apg

43, 4y dy; Gy T
the expression is done by deleting the row and columns in which the element belongs.

Note : A determinant can be expressed along any row or column but the sign of the elements

must be according the following rule.
+ - o+
o+ -
-+
a b ¢
Exsmpie:Let A=/ m
P 4q

Now expanding the above determinant
(i) Along first row -

A A A
= a(mr - ng) - (ir - np) + o{lg ~ mp)

= amr — ang — blr —bnp + clg~ cmp
(i) Along first column

YRR
A= - +
g r| |p rl ‘|m
=a(mr - ng) - l(br — cq)+ p(bn - cm)

= amr-anq ~ lbr — leq)+ pbn— pem
(i) Along third column

”’lj a b‘ ’ia b
A= -n +

p p g [ m
= o(lg - mp) — n(ag - bp) + r(am — bl)
= clg— cmp — naq—nbp + ram - rbl

A=a

Clearly the expression for Ain (i), (i) and (iu) are same.

5.18 ELEMENTARY PROPERTIES OF DETERMINANTS

The expansion of determinants can be done by very easily by using the following
properties. These properties can be applied for determinants of any order. However,
we, shall describe the properties for the determinants of order 2 and 3.
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Property 1: If every element of a row (or column) is zero, then the value of

determinant 18 also zero.
Example :
4
108 10 8 4 8 4 1
0 0 + -
8 - 4 - 4 8
4 8 -
=0
Expanding along second row.

Property 2: If the rows and columns of a dekrﬂnant are exchanged the value of the
determinant remains same.

Example :
¢ b‘zad be, and‘ ‘1 ad—be
c d
[+
le d
a b ¢
Similarly, |[d e f|=(er—qf)—8dr- pf)+ d(dg—ep)
P q
a d p
and b e gq=aler—fg)-d(br—cq)+ pbf —ce)
f r
= a(er —gqf)—bdr - pf)+ ddg-ep)
abecl la d
fromabove |d e fl=b e ¢
P 4q c fr

Property 3 :If any two adjacent row (or columns) of a determinant are interchanged
the sign of the determinant is changed.

j:ad_bc, “’ j:bc-—ad
a

=—{ad - bc)

R

Example :

[

[



c

a b
Similarly for, |d e f|=a(er—gf)—Hdr—pf)+ddg—ep)
P qr

d e
and a b c|=d(br-qc)-éar—-cp)+ f(aq- bp)
p q r
= —[a(er —qf ) - Bdr - pf}+ (dq — ep)
a b c
=—d e
P qr
d e a b ¢
a b cl=—d e

P gqr \pqgr

Note : If the rows (or columns) are exchanged odd times the sign of the determinant is

changed but if they are exchanged even times the sign of the determinant does not
change.

Property 4 : If any two rows (or two columns) of a determinants are identical, the
value of determinant becomes zero.

a b ¢
For A=la b c|,then first and second rows are identical.
P 4
Interchanging first and second row and using property 3.
a b ¢
A=—a b ¢|=-A
P 9q

DA+ A=0=2A=0=A=0
or 20=0 or A=0
Note : The value of the determinant used above will also be zero, if we expand it.
A = a(br - gc)- War - cp) + o aq — bp)
A = abr —aqc - bar + bep)+ caq— cbp =0

Property 5 : If any row (or column) of a determinant is multiplied by any non-zero
number then the value of the determinant gets multiplied by the number.
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a b c
For A=d e f Let us multiply first row by k, then
P q
ka kb
d e f|=kaler—gf)-kb{dr~ pf)+ keldg-ep)
P q
= k{(er —¢f) - dr - pf) + o(dg ~ ep)]
a b ¢
=kd e fl=kA
P q
ka kb a b ¢
Similarly =\ld le Ifl=KHd e fi=kIA

P q r p g r

Nete: Property 5 is of great importance. It is clear that if any row (or column) has common
factor, then it can be taken out of the determinant. -

Conversely, if we multiply any row (or column) of a determinant, by a constant then
we divide the entire determinant by the same coostant to keep the same value of the

determinant.
a b ¢ ka kb
d e f=—’t- e f
P 4 P q T

Property 6 : If each element of a row (or column) of a determinant is the sum of two
quantities then the determinant can be written as the sum of two determinant of

the same order.
a+l b ¢

For |d+m e =(a+I)(er—qf)—(b+mXbr—cq)+(p+n)(bf-—ec)
p+tn ¢

(On expanding along first column)

=a(er—qf )+ d(br—-cq)+ p(bf —ec)+ l(er —-qf)-- u{br—cgj+ n(bf — ec)
a b e b ¢

=ld e fl+m e

P g L

Similarly we can show that



a+k; b+l ¢l la b+4 ¢ Wk b+l ¢
d+k, e+l, fl=d e+l, fl+k, e+l f
p+ky g+l p g+l k, q+1,

a b c la L, ¢ k b k, L ¢

=d e fl+id 1, +ky e fl+k, L S

P q p 4 ks g 7 ks L ’l

Property 7 : If each element of any row (or column) is added with the multiple of
corresponding element of another row (or column) the value of the
determinant is unchanged.

a b ¢ a+kp b+kg c+
For let A=|d e f| and A =|d e f
P 49 P q r

here A, is the determinant obtained by A where k times of each element of the third
row is added to the corresponding elements of the first row.

a b ¢ p q
Now, A, =ld e fl+kld e f (by property S and 6)
P 49 P 9
a b c
=|d e f|+k0 (byproperty of4)as two rows are identical.
p q - |
Az A

Property 8 : The sum of the product of the element of any row (or column) with the
cofactor of the corresponding elements of another row (or column) is
Z€10,
a b c

For A=ld e
p qr

Let the cofactors of elements of first row be 4,,4, and 4, are multiplied by the
elements then of the second row and added, we get

il L

=d(er—qf)—eldr- pf)+ f(dq - ep) .
= der — dgf —edr —epf + fdq— fep
=0

Property 9 : [fthe determinant contains a variable x, and the element are polynomials
in x such that putting x =a, the value of determinant becomes zero, then
(x-a) is a factor of the determinant.
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Since the element of the determinant are polynomials in x, therefore the expansion of
thedeterminant will also be a polynomial in x. As the value of determinant becomes
zero by putting x = g, then (x — a) is a factor of the polynomial after expansion. Thus

(x—a) is a factor of the determinant.

for
1 x x*
et  A=[l y
1z z?

In second row if we write y =x, then the first and second rows become identical
consequently the value of the determinant becomes zero. Therefore, (x — y)is a factor
of the determinant.

Similarly putting y = zand z = x, the value of determinant becomes zero in each case.
So (y-2z) and (z - y) are also the factors of the determinant.

SA=Mx -y y-z)(z-x) (1)
where) is 2 constants the value of which is to be determined. It is clear that each term
of the determinant after expansion is of degree three and each term of the product in
right side is also of degree three in x, , z.
We observe that yz* is a term in the expansion, its coefficient is 1, and the coefficient
of yz? in the RHS of (1) is A.
.. comparing the coefficients of corresponding terms on both sides of equation (1},
weget A=1

LA=(x-y)(y-z)(z-x)
5.18.1 Working Rule for Finding values of Determinants :

To evaluate a determinant we apply the properties of the determinants and try to bring
maximum number of zeros in any row (or column) and then the determinant is
xpanded along the elements of the same row (or column).

Note : First, second, third ... rows are denoted by R, Ry, and R; where as first, second, third
columns are denoted by Cy, G, Cs.....
SOLVED EXAMPLES

Example 1 : Evaluate the following :

1 o 1 11 10
@) F _‘ (ii)' _b( Qi) B4 12 2
3 —a
1 25 3



-1
Solution : (i) AzE 4|=2x4—(3)(—1)=8+3=11

(i) A= ‘L b‘ Ixb~-(-1)(—a)=b-a

I 11 10| [tl1+10 11 10
(i) B4 12 22|={12+22 12 22
1 25 36 P5+36 25 3
11 11 10| 1o 11 10
=l12 12 22|+p2 12 22
5 25 36 B6 25 3

=0+0 (two columns in cach determinants are identical)
=(

Alternatively :

1 11 10 @1-11 11 10
A=34 12 22)=34-12" 12 22| C;-C, > C,4
1 25 3 1-25 25 3
10 11 10
=02 12 22|=0
6 253
Example 2 : |

(C, =C;) (first and third column are identical)

a h g
Provethat |k b f|=abc+2fgh—af* —bg® —ch?
g f ¢

Solution : Expandihg the determinant along the first row (R;)
a h g

A
LHS=|k b f]= ~ +g

f c c

g f ¢ .
= a(be— f*)-h(hc—gf)+ g(hf —bg)
=abc—af * ~ k% c—ghf + ghf - bg*

=abc+2fgh—af - bg? — ch?
= RHS
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Business Mathematics Esample 3 : Ifa, b, c are all different and:

a a* l+a’

b b* 1+b*=0 showthat 1+abc=0

c ¢t 1+c°

a @ 1+d°| la &* V| la & a4

Solution: [b % 1+8%=lb B* 1+p b* B

cc? 1+ e 2 1 le ¢ e

a-b a-b* 0 1 a 4
=lb—c b*-c* O+abdl b b
c c? I 1 ¢ o

Applying R, - R, — R,, R, —R; — R, in both the determinant and taking a, b
and ¢ commeon from first row, second row and third row respectively in second

determinant,
a-b a*-b»* 0 a-b a*-b?
=lb—c b*-c2 +ab b-c b*-¢t
I c? 1 1 ¢ c?
1 a+b 1 a+
=(a~b)}(b-c)1 b+c O+abe(a-b)b-c)0 1 b+c
c &1 c ¢

={a-b)(b-c)(c-a)+ abda-b)(b-c)(c~-a)
Expanding first determinant along third column and second determinant along first

column.
Now, (a-b)(b—c)(c—a)l+abc)=0
But a, b, ¢ are all different that is a = b# c(given) S+abe=0
Example 4 :
1 x yz
Provethat | y =z =(x-yly-z)(z-x)
1 z xy
1 x )z
Solution: A=1 y = Applying R, -R, 9 Ry, R, —R; =9 R,
fzmmmmm . |z xy



=(x-y)y-2)0 1

A=(x=y)y-2)U(~x+2)

A=(x-y)y-2)z-x)

Example 5 : Evaluate
-y y-z z-X
y—z z=xX X—JY
Z~-x X-y y-
Solution :
-y y-z zZ-x
et A=ly-z z-x x-y
Z—-x x—-y y-z
y—-z z-—Xx
A= z-x x~y|=0
=y ¥y-

Example 6 : Evaluate

1 x y+7z
1y z+x
1 z x+y
Solution :
1 x y+7z
A=|1 y z+x
1l z x+y
0 x-y y-
A=|0
1 z x+y
Expanding along C;

A=(x-y)y-2z) Ix(-1+1])
«( X )o

-X (Expanding along C|)
Xy
Applying C, +C, +Cy =
by property of determinant

Applying R —Ry — Rs, R, -Ry; > R,

0 1 -1

y=-z z-y =@x-y)(y-2)|0 1 -1

I z x+y
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A=0

Example 7 : Prove that

2 )t g y)(y - 2)(z-1)

b 4
Let A=k? p? 2z (takingx,y,zcommon from first, second
Y

and third columns respectively)
1 1 1
=xyzx y z
2 2 2
1 0 0
=xyz|x y-x z-x Applying

Rz _Rl o 4 Rz andR3 “"Rl - R3

=xyz{(y-x)(22 —x?)-(z-x)(y* —x?)}
=xyz{(y-x)(z-x){z+x-(y +x)}}
=xyz(x—-yNy-z)(z=x)

Example 8 : Without expanding Prove that

a b y b
y z1=x a p|=|p
q r c r| |a

o R W
~

P z




Solution :°
a b y b y z
p g r z cr a b
a b
Aj=x y z, {(Interchanging rows and columns )
paqr
a
Ar=ipb vy gq, (Interchanging C, and C,)
c z r
a
==y b » (Interchangmg R, and Rg)
z c¢cr
y b
= a =A2
z ¢ r

(Interchanging R, and R; )

-_-_l: }l: (Again Interchanging R; and R;)
P 4
y 2 x y 2
=(—1)"‘:J g ri=p g r|=A,
a b a b
Aj=A; =4y

Example 9 : Prove that

11 1
y z|=(y-z)(z-x}x-y)x+y+z)

Solution :
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Let ~ A= y r4 Apply‘ingC]'CZ—)Cz, Ci"“'C3_)C3
2 2 2
z
1 0 0
A=llx x-y x-z Expanding along C,

(x - y) X~z J

x-Er+ay+yY) x-2x +x+z’

1 1
B (x—y)(x2 +xy+y2) (x-z)(;vc2 +12+22J
(Taking (x-y) and (x-z) common from C, and C, respectively).
=(x- - +z+ 22 - -y - y?)
=(x-y)x-2)(x(z - y)+(z-yXz-y))
=(x-y)x-2)(z-x)(x+y+2)
=(x -y y-2)(z—x)(x+y+2z)

Example 10 : Prove that

x+y y z
y+z z x——-3chz—x3—-y3—x3
z+x  x
Solution :
+y y z
Let A=ly+z 2z X Applying C, + Cy — C,
z+x  x Y
+y+2 y
=ly+z+x z x Taking (x + y + z) common fromC,
z+x+y X ¥
1y
A=(x+y+z)l z x| Applying R, -R, - Ry, Ry —R, > R,
1 x y



1

=(x+y+2z)0

z
=(x+y+zL

y

z

z-y x-—z|, Expanding along C,

0 x—y y-z

-y x-z
=y y-z

=(x+y+2){{z-y)y-2)-(x-y)(x~2)}]
=(x+y+z){y—-22 -y + x> +xz+ yx— pt}

=(x+y+2){xy+yz+ zx—x

2_,2 %

=—(x+y+z)(x2+y2+22 —Xy -~ yz—7xX)

=—(x*+ P +2 “3x2)

=3gyz-x> -y? -2*

Example 11 : Find the value(s) of x if}

Proved.

3+x 5 2

1 7+x 6 |=0

2 5 3+x

Solution : Given equation

3+x 5 2

1 7+x 6 |=0

2 5 3+x|

l+x 0 -1-x

2 5 J+x

1+x O 0

1 7+x 7 |=0 Applying C, + C, = C,
2 5 5+x

=(1+x)[(T+x)(5+x)-35]=0 Expanding along R,

=(1+x)[35+12x +x2 -35]=0

=x(x+1){x+12)=0

sox=0,

x=-1, .

x=-12
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Example 12 : Prove that

+y+2z x y
z y+z+2x ¥y =Ax+y+z)
z x z+x+2
Solution :
x+y+2z x ¥
Let A= 1z y+z+2 y Applying C, +C, +C; - C;
z x z+x+2
Ax+ y+z) X y
A=R(x+y+z) y+z+2x-2y y
Ax+ y+1z) x Z+x+2x-2y

Taking 2(x + y + z) common from C,

[u—

X y
A=2x+y+z)|1 y+z+2x-2y y
X z+x+2x-2y

[y

Applying R, =R, > Ry, Ry -R, > R,

[y

X Y
y+z+x 0
0 0 x+y+z

=

=Ax+y+2) Expanding along C,

x+y+z 0

=Ax+y+
Axty+z) 0 x+y+z

=2x+y+z)(x+ y+2z)°

=2(x+y+2)°
EXERCISE 1.2
y+2)? 2 x2
2 2 2 |_ 3
y (z+x) y© |=2yz(x+y+2)
z2 z? (x+ y)z



Q.2.

Q.3.

Q.4.

Q.5.

Q. 6.

Q.17

Q.8

Q.9.

Q. 10.

X =y
2y
2z

-z 2x

y-z
2z

y+z

Z+ X

2x
-x 2y |=(x+y+2)°
Z-x—Y
x2
Y =(x+y+2)(x-y)y-2)(z-x)
2
Z
=ab

y 2% =(x = y)y—2)(z - x)(xp + yz + 2x)

= xy

xX+y
3x+2y
6x+3y

X ¥y
X 34!
X3 ¥

=0  Where w is one of the imaginary cube roots of unity.

X+y+z
4x + 4y +2z|=x°
10x+6y+3
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Business Mothematic Represents the equation of a line which passes through the points (x,, y,) and (x,, y,).

1 . o»n |
Q. 12. Prove that S|%2 72 1=0
3y |

Represents the area of a triangle whose vertices are (x,, y|), (x;,y,) and (x5, y5).
Q. 13. Find the area of a triangle whose vertices are (2,+ 4), (+2, 6) and (5, 4).

5.9 APPLICATION OF DETERMINANTS
5.19.1 Solution of System of Linear Equations by Deterninants : (CRAMER'S RULE)

Consider the system -
ax+by=q
azx + be - CI

On solving the above equation we get,

_ bye; —byey _ 416 TG Ll ;tﬂ
] - ¥
ab, —ayb, a\b, —a,b a b
CI b] a[ al

c
! =0162 —Claz aﬂd

=b,c, - bycy,
2 ©

=ab, —a,b,

¢ b a; b

The values of x and y can be given in terms of the determinants. Thus we have,

¢ b c <
e by _lea @
a b g b
a; b a, b,
] 4 b] . . . .
Here we see that is the determinant of the coefficients of the variables as
; D
¢ b ) ) \ .
' "1 |is the determinant obtained by replacing the coefficients of x in two equations
C; Oy

a ¢

by corresponding constants, and is the determinant obtained by replacing the

2 &
coefficients of y in two equation by constants in the equations.

Now consider the following system of linear equations in three variables x, y, z.

ax+by+ez=d (1)
ax+byy+ez=d, (@)
Self-Instryctipnal Materigl a3x+b3y+csz=d3 (3)



Mairices and
Now,

Determinanis
dy b | lax+ bytez b ¢
dz bz Cqy| =19 X + be + CrZ b2 CZ
ld3 by €3 |@x+byytcyz by o
Putting the value of d;,d, and d; from equation (1), (2) and (3)
lax b,e| by B¢l legz b g
= azx bz Cy + bzy bz CZ + Cyz bz )
1432 e |y bicy| |3z byes
la, b, ¢ by b ¢| o b ¢
=xa2 bz C2 +yb2 bz Cz +ZC2 bz C2
a, b3 ) b3 b3 Cy C3 b3 C3
a b ¢ . . .
(Deter min ants in2nd and 3rd terms vanish
as they haveidentical columns)
ay by ¢
d b ¢ a b ¢
S d2 b2 Cz =X az bz 02
dy by o a3 by ¢y
d b ¢ a d ¢ a, b d
d, b o a, dy ¢ a, b, 4,
d, b d, ¢ a, by, d
or x=12 73 Ol gimilarly y=12-3 3l gpq =t 03 T
aq b ¢ a b ¢ a b ¢
a b o a b o a b o
as by o ay by ¢ 2 by o
aq b ¢ (Deter minant of the coefficients of the
Let D=ja; b, ¢,|#0 variablesinthethreeequations.)
a3 by ¢
dl bl o) a, d] Cl ay bl dl
DI = d2 bz C.’Z Dy = a: d2 Cz and Dz = a2 bz dz
d3 b3 Cy a3 d3 C3 a, b3 d3
D
Then x=2’-‘—, y=—2, and z=2i If(D=0)
D D D
In determinants D,, D, D, the column of coefficient of variables x, y and z are
replaced by the constants respectively. It mctionad Material
Seif- Instructional Material
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The solution of system of lincar equation discussed above can be used to solve a
system of » equations in » unknowns as follows - :

Consider the following system of n linear equations in 7 unknowns.
ay¥y + @p%3 . GpXy =0
alel + 02212 e aznxu =€y

(A)

Ap( X1+ BpaXy oo. QpXy =Cp

=)

i G . Gy,

dyy gy ... ar,
Let D=(............. 1#0

Bnl Gy vv Gy
)

Let D, be to determinant obtained by D after replacing first column by “2

D D
Then x, =F’*, Similarly x2=—DIi, X =-Di.., X, =—

The solution of n linear equations in n- unknowns given above is known as Cramer’s
Rule after the Swiss Mathematician Gabriel Cramer (1704-1752).

SOLVED EXAMPLES

Example 13 : Apply Cramer's Rule to solve the following system of linear equation.

2x+y =6
3Ix-2y=9
Solution : H D= ! D_= 1 D, =
olution : Here D=/, =, y=
D
Now, x="% =—y-
1
2




(-12-9) _{18-13) Matrices and

= 4-3 Y 4-3 Determinants
)
-7 -7
x=3 y=0

Example 14 : Apply Cramer's rule to solve the following system of equaﬁons.

x+y+z=4
2x—-y+2z=5
x-2y-z=-3
Solution :
1 1 1
=1(1+4)-1(-2+2)+{—4+1)
Here D=0 -1
=5+4-3=6+0
1 -1 ~
4 1 1|
=4(1+4)-1-5+6)+1(-10-3)
D =5 -1 2
=20-1-13=6
-3 =2 -1
1 4 1
=1(-5+6)-4(-2-2)+1(-6-5)
Dy=f 5 A lii6-11=6
1 -3 -1 -
P 1 4
D= -1 5 =13 +10)-1{-6-5)+4(—4+1)
e =13+11-12=
| -2 3 13+11 12
D
._.x=&=§=1 y:—y:.-g:l Z=2L=E_—"2
D 6 D 6 D 6

x=1 y=l, z=2

Note: (i) Inthe system ofn equations in n unknowns given by (A); if ¢;= ¢,=... ¢,=0,
tlmueachD,,;,J!),:l ,D,J,...,Dm =0andif D + 0, the system has only the trivial
solution x; =x, =...x, =0

() Cramer's rule is not applicable if D = 0.

@) 1£D =0 and either D, 0, (or any other Dx; #0) the system has no solution.

(iv) IfD=0,andD, =D, =...D, =0, thesystemhas infinite number of solutions.

For consider the s stem of eq ations 293
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x+y=17 (1)
2x+2y =14. ..(2)
Here,
11 7 1 1 7
D= =0, 2-2=0, D, = =14-14=0and D = =14-14=0
14 2 7 1

Thus we see that D=0, D, =D, =0

Now putting x = & in equation (1), k is arbitrary and can take any value.
y=T-k

thus the system has solutions and it has infinite number of solution.

! If we draw the graph of these two equations we get coincident lines, and as such
| there are infinite number of points where these lines meet, the system bas infinite
number of solutions. '

Example 15 : Solve the following system of equations :

x-y+3z=6
x-3y+3z=-4
5x-3y+3z=10
Here,
1 -1 3 1 -1 1
D=1 3 J3=3]1 3 -l
3 3 3 1
10 0
=3|1 4 - Applying C, +C, - C3, C3+C, = C,
v
=0 (as second and third columns are scalar multiple of each other)
6 -1 3
D =4 3 -3/=3
10 3 3

6 -1 1 2 2
=-4 3 "1 =36 6 ApplyiﬂgR1+R2—)Rl, R2 +R3—)R2
10 3 1 10 33




Similarly it can be shown that D, =D, =0
Now consider the first two equations,

x—y+3z=6
x—-3y+3z=—4 these equations can be written as
x-y=6-3z
x+3y=3z-4 Treating z as constant we have,
Here,
D=|1 -1.'5 D =l§—3z -1‘, b _f 6—3;‘
1 3 * Bz-4 3 7l 3z-
Or,
6-3z -1
D, Lz—-4 3‘
DT -
-
J‘:218—92—4=14—6z=7-3z
3+1 4 2
And,
1 6-3z
y=&=}l 3z-¢‘ =3z—4-6+3z
D 1 -1 3+1
»
6z-10 3z-5
T4 2

Since we have taken z as constant we can give it arbitrary values and accordingly we
can get the corresponding value of x and y. Thus we have infinite number of solutions
which satisfy the first two equations. These are also satisfying the third equation.

EXERCISE 1.3

Using determinants (Cramer's Rule) solve the following system of equations.
(i) x+3y+z=8 (i) x+y=-5
dx+y =17 x+z=-6
x-3y-3z==2 X+y-2z=]3

x+l4y=-4

Q1. O
Bx+12y =-6

(V) 2x-3y—z=0 (v) 2x+5y-z=9 (v) Ix+y+2z=3
x+3y-2z=0 3x-3y+2z=7 2x+3y-z=-3

- x 3y 0 2r 4y+3z 1 x+2y+z 4

Matrices and
Determinants

Self-f M,
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5.20 ADJOINT OF A SQUARE MATRIX

5.21

Consider
- -
@1 42 .. G,
ay Ay .. Gy
Then A=
|_a_,,1 Qpy oo Ay |

Let the cofactor of the element a;;be 4; then the cofactor matrix can be written as -
A A e Ay ]

A

(A Az - A

Taking the transpose of [4;]=(4 ;]
4 Ay . Ay
A Ap ... Ay
Thus  [4;]=| 43

T e
The transpose of cofactor matrix of the elements of the matrix 4, is called adjoint of 4
and 1s written as adj 4

4 4p O
Let A = 021 azz ﬂﬁ

43 8y axn

If 4; denote the cofactor of the element a;;, then the cofactor matrix of A is given by :

A“ Au Al3
Cofactor matrix of A= AZ 1 An A23
A!] A32 A33
All A21 A31 :
Adj A=\4,; Ay A3
AB A23 A33
INVERSE OF A MATRIX

For every non-singular Matrix A, there exists a matrix B of the same order as that of A.
such that 4B = BA = [ where I is the identity matrix of the same order as of A.



The inverse of matrix 4 is denoted by 47".

If A is a square matrix [a;;] and | 4| # 0 i.c. the matrix A is non-singular then

1
Al =adiAx—
g
SOLVED EXAMPLE
1 0 -1
Example 16:If A=|3 4 5| find A',adj 4 and 4™
0 -6 -2
1 0 -1 1 3 0
Solution : A=|3 4 5 then A'=|0 4 -6
0 6 -2 -1 5 -2
1 0 -1
Now, 4=p 4 5
-6 -
1 0 0
= 4 8 Applying CI+C3 "‘)C3
-6 -
=1(-8+48)=40#0 Expanding along first row.
~ A is invertible.
Now,

Ay =-8+30=22, Ay =—(+6)=-6, 4; =4

AI.2 =—(“"6"0)=6, A22=—2 =—2, A32 =—(5+3)=_8

A3 =-18-0=-18, A); =—(-6)=6, A;; =4

(22 6 4 22 -6 4
fAdiA=| 6 2 8| . A—adiax—=1|6 2 3
-18 6 4] [4] 40 18 6 4

1103 1]

20 20 10

13 1o

120 20 s

9 3 1

720 20 10

Matrices and
Dedermunuars
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EXERCISE 1.4
4 -6 1
Q.1.Showthat A=|-1 -1 1| isinvertible. Find 4',adj 4 and A",
4 11 -1
Q.2. Find the inverseofA=[Go,sa S’"“}.
- —8Ingt  CosQ
23
Q. 3. Find the inverse of A=|0 4 1|
2 30
3 2 6 7
Q.4.1f4= and B= verify that (4B)™' =B'A7",
75 8 9
2 1 3
Q.5.Find A,adj 4, and A7), if A=|~4 -1 0

-7 2 1
5.22 ELEMENTARY OPERATIONS ON MATRICES

. . 3 45 6 8 10 s .
Consider the matrices 4 = , B= here matrix 3 is obtained by
6 8 10 3 45

interchanging first and second rows in the matrix A.

123 2 4 6
Further C = and D=
789 14 16 18

Clearly, Matrix D is obtained by multiplying each element of Matrix C by 2.

e g 23] g3
i FRR =15 10 16

Matrix F is obtained by multiplying second row of Matrix E by 2 and adding it to the

second row.

The above operations on rows of a matrix are called elementary row operations.

Thus an elementary operation is either elementary row operations or elementary

column operations and is of three types.
(i) Interchanging any two rows (or columns).

(i) Multiplication of the elements of any row (row column) by any non-zero number.

(iti) Addition of a non-zero scalar multiple of any row (or column) to another row
(or column). :



5.22.1 Elementary Matrices :

A matrix obtained by a single elementary operation from an identity matrix, is called
elementary matrix.

1 00
Let I;={0 1 0|Onimnterchanging first and second rows, we get a matrix of the form

0 01
v
0 0 Multiplying first row of I, by 3, we get another matrix
0 1
0
1
0

R,
|
& — =

0
0 | The matrices A and B are elementary matrices.
1

>~
il
o O W

5.22.2 Equivalent Matrices : Two matrices are said to be equivalent if one can be obtained
from the other ly elementay row transformations.

If matrix B is obtained from matrix A by elementary row transformation, then we
write A ~ B.

5.22.3 Inverse of a Matrix by Elementary Transformations :

If a matrix A is reduced to identity Matrix I by elementary transformation, then
PA =1, where P=P,P,_,...,P,P,, Matrices
L P=A"
To find the inverse of a matrix A, we write
A=I4
Now we perform eclementary operations on A in left side and same elementary
operations on/ in right hand side so that 4 is reduced to / in left side and / on right side
reduce to P, getting / = PA then P is inverse of 4.
5.23 ECHELON FORM OF A MATRIX

A matrix is said to be in Echelon form if its first element is one and the elements below
the diagonal are all zeros.

Examplet :
1 235
0] Gi) [0 2 46
0 007

Matrices unil
Determinarts

Self-Instructiongl Maierie]
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are the examples of Matrices in Echelon form.

Note: |1 2 3| A matrix can be reduced to Echelon form by elementary row
0 -1 7| operationonit.

0 0 3| Thefollowing steps are used to reduce a matrix in Echelon form.

(1) First we reduce the element of first row and first column ie. (1, 1)th element as unity
i.e. 1 by suitable elementary row operations.

(i) Wereduce all the elements below the element of first row and first column i.e. 1 to
Zero0.

(i) We reduce the element of second row and second column i.e. (2, 2)th element as
unity by suitable elementary row operation.

(iv) We reduce all the element in the second column to zero, below the second row.

In the similar manner we proceed and the matrix is reduced in Echelon form.

SOLVED EXAMPLES
Example 17;
2 3 3]
Reduce A=|3 6 12/ to Echelon form.
2 4 8]

Solution ;: We have

23 3] 139
A=|3 6 12| ~|3 6 12 Applying R, - R, - R,
2 4 8] : 8
1 3 9]
~(0 -1 -5 Applying R, - (R + R;) = R,
_2 4 8|
1 3 9 |
~10 -1 -5 Applying-2-R3-»R3
_1 2 4]
3 g
~10 1 Applying -R, - R,
I-I 2 4_
1 3 9]
~ 0 1 5 Applyinng—(Rl+R3)—> R2
000

Whi hi i Ehl f



1 23

Example 18 : Reduce A=|2 1 3| in Echelon form.

312

Solution : We have
1 23 (1 2 3
A=2 1 3|~0 -2 4
31213 1 2

Applying Ry —(R, +R;) > R,
23

1
~[0 1 2 Applying “%Rz
3 1 2
1 2 3
~0 12 Applying R, -R; — R,
-2 11
1 2 3 |
4 L1 2
I ] 2, 2
1 2 3
5 7
0 =, —
L 2 2
1 2 3]
~0 1 2 Applying 2R, — R,
05 7]
1 2 3]
~0 1 2 Applying SR, — Ry — R4
0 0 3]
Which is Echelon form of A.
Example 19 :
1 23 4
Reduce A=[2 1 3 2| toEchelon form.
312 4

Matrices and
Determinants
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Solution: We have
1 23 4 1 2
213 2|~[0 -3
312 4 3 1

2 -3 4]

-3 -3 -6

-5 -7 -8

2 3 4

?
o o =

!
s o —~
| —
LN
b -
~]
)
o ©

!
<
= R S N — L

6
Example 20 : Find the inverse of | 4
0

Solution :
6 6 8
Let A={4 -6 8
0 -2 2

We have,

3 4
-3 -6 Applying R, -2R, — R,
2 4 .
Applying R, —3R, - 3R,
. 1
Applying 3Rk
Applying R; +5R; — R,
.1
Applying ER3 - R,
-6 8

-6 8| by elementary transforr-z4on.
-2 2

6 -6 8/ |1 00
4 -6 8|=|0 1 0|4

0 -2 2| |0 01

(- d=14= Al
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| I
i—b2 | —

{
MIwN

IO =R —

<

R|—= O

<

= O

wis L
e

.1
Applying gRl >R

Applying R, —4R, - R,

' - R
Applying % — R, and —21 - R,

Applying R, + R, = R,

Applying R, + Ry — R,

Apply‘ing R2 '—4R3 —> R3

Applying -3R; — R,

Matrices and
Determinant:
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Example 21 : Find the inverse of

} by elementary transformation.

3
3
4

™y < on

1. p— —]

Solution :

Lot T o 0 -
N < o

v g )

Let

Now,

(c A=IA=AD

e g p—

L
T 1
Rzn_m,
|
N
£
&
<
-
=
==’
o T o
=l e ]
It
—
n oo
7o
— o O

g RS
[w] 2]
] o]
o o
| |
g R
g g
.W &
< <
-
~ -
- 1
e o —~ I 2
310.4_,..10-|||I_
| 1_.“01
— ]
- — =~ =
. nﬂlo
I 1
H
'n o~ © © —~ =~ e~ 7
e — |
oS o © T f
-_— 0 O I_.
—_—_- o b =
. |
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5.24 SOLUTION OF SYSTEM OF LINEAR EQUATIONS BY MATRIX METHOD.

Consider the following system of linear equations.
ax+by+cz=d
ax+byy+cyz=d,
ax+biy+cyz=d,
The above system of linear equation can be written in Matrix form as :
aq b ol|x| (4
@ by ¢ ||y|=|d (D)
a, by ¢llz| |d;y
aq b ¢
Let A=|a, b, c,|, and |420

a; by c

Now multiplying (1) by 4™ we get

a b ¢l|x d
AlNa, b, o ||y|=474d,
ay by ||z d;
x dl"
Iyl=47d, ( A7 4=1)
z d, J
x d, x| |x
And y =47 d, I yl=y
z d, z z
x d,
Where X =| y| X =A47'B, B=|d, | and
' z d,

Now comparing the corresponding element on matrices on either side , we get the
value of x, y and z.

Example 22 : Solve the following system of linear equations by matrix method.
x+y+z=1
x-2y-3z=1
3x+2y+4z=5

Solution : The above system of linear equations can be written as,

Matrices and

Determinants
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Coefficient Matrix A=l1 -2 -3

[#8)
[ ]
L

Variables Matrix X =

Mo M

Constant Matrix B=

[ T Su T |
|

L

2 1 1[x] 1

1 -2 3|lyi=|1 (1)
3 2 4| z| (5
2 1 1 1 1
Hence 4=|1 -2 3 A=l =2 -3
3 2 4 2
-2 =3 1 -3 1 -
Now, |4 = -1 +1
2 48 3 2

=2A-8+6)-1(4+9)}+1(2+6)
=—4-13+8=-9=0

v |4 =0

.. A 1s invertible matrix.

Now cofactors ¢ ” the element of | 4] are given by,

-2 3 11
Au=| =8+6=-2 Ay = =—(4-2)=-2
4y, =" '3——(4+9)— 13 4, =L log-3=5
-2
Ay = 2‘=2+6=8, A23=4E ‘:—(4—3):-1

|1
-2

1
A33 =r§ ._..2]=“4_1=—5

1
.:—3+2=—1,
-3



2 —13 8 : Matrices and
Determincnts
.. Cofactor Matrix of |4]=| -2 5 -1

-1 7 -5
-2 -2 -1 i -2 2 -1
and Adj.A=|-13 5 7 .'.A“%=—%.—l3 5 7
8§ -1 -5 | g -1 -5
Multiplying equation (1) by A™
Teyo-2 102t 1= | -2 =2 -
—-19-—13 5 7111 -2 -3 y=--9-—13 5 7|1
| 8 -1 -5][3 2 4]|z 8 -1 -5][5
[ 2 2 1] i 2 1]
+= += = += += =
9 9 912 1 1 9 9 9]
81 5B 2 4] |81 5D
9 9 9] L9 9 9]
[ 4 2 3 2 4 2 2 6 4
- 4+ += = —— 4= = - 4=
9 9 9 9 9 9 9 9 9
26 5 21 13 10 M4 13 15 28
9 ¢ 9 9 9 97 9 9 9
16 1 15 8 2 10 8 3 20|z
—— += = = = = —-— == +—
.9 9 9 9 9 9 9 9 9
[2 2 5]
—_ +_ -
9 9 9
_|B 3 ¥
9 9 3]
g8 1 25
—— = —
L9 9 9
100 [x] [ 1
01 0| |yl=|-3
006 1| |z 2
| X |
y|=|-3
4 2
Comparing the corresponding elements of above matrices, we get
x=1, y=-3,  z=2

Note : If |4]#0 the solution of system can be writtenas X = 4™'B W&%
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x d,
Where X =|y|, and B=|d,
z d,
Thus in the above example we have, X = 47'B
2 2 5] 2 2 5]
x 9 9 9|1 9 9 9 x 1
13 -5 -7 13 5 35
yi=l— — —||l|=|—= —-= ——=|or|y|=|-3
9 9 9 9 9 9
z] |-8 1 25([5] -8 1 25| |z] [ 2
9 9 9| 9 9 9]
Consequently x=1, y=-3,z=2
Example 23 : Solve the following system of linear equations :
 2x-3y+3z=1
2x-3y+3z=2
3x+2y+2z=3
Solution : The above system of equations can be writien as :
2 33 X 1
2 2 3,lyl=12 ..(1)
3 =2 2 z 3
233 =3 3| =2(4+6)+3(4-9)+13(—4-6)
Let ~4=2 2 3|, |4= 2 3 =20-15-30
3 -2 2 3 2 2 =-25%0
.. 4 is invertible.
Cofactors of elements of | 4] are
Ay =(4+6)=10, A, =4-9)=5, 413 =(—4-6)=-10,
Ay =~(—6+6)=0, Ay =(4-9)=-5, Ay =(—4+9)==5
10 0 -I5 | 10 0 -15
Adid=| 5 =5 o ~atLl aga=-L| 5 5 o
4| 25
-10 -5 10 : -10 -5 10



5.25

2, 3
5 5
orat=[-L L1 g
55
¢ 1 2
. 5 5 5
Now, multiplying (1) by 47}, we get
2, 3 2, 3
? . 502 -3 3||«x 5 511
-~ = 0 2 3|yl = L 0|2
55 5 5
21 2 3 =2 2||z 2 1 2
| 5 5 5] | 5 5§ 5]
-_g. +0 +2 Z
JRERER. :
N | M 4y
or |y|= 5 +5 +0| or |y 5 (.A A I)
z 2 2 6 z 2
—_— +_ —— _—
| 5 5 5] L 5]

Comparing the corresponding elements on both sides.
x=T/5 y=1/5 z=-2/5

SOLUTION OF SYSTEM OF LINEAR EQUATIONS BY ELEMENTARY
TRANSFORMATION (OPERATIONS)

Consider the following system of linear equations
apx+a,y+anz="b
AyX+any+anz=>b,

Ay X —aypy+apz=Dby

Solution : The system of equations can be written as :

an a2 an X by

a; 4ap ap y| = | b

a3y 4y 4n z by
41 42 an X by
Ifwedenote A=|a, ay apn|, X=|y|and B= |by,
ay) 4z a4y z by

Then we have AX =B

Matrrices and
Determinants
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Clearly A is the coefficient matrix (coefficient of the variable) X is the matnx
representing the variables and B is column matrix representing the constarts on right
hand side of above equations.

To solve the system of linear equations we reduce the coefficient matrix A into
Echelon form by elementary row operations and then write the corresponding
equations and then we solve.

The system of linear equation is said to be consistent if it has solution and inconsistent
if it has no solution.

Example 24 : Solve the following system of equations by elementary row transformation.
2x+y+z=1
x-2y-3z=1
Ix+2y+4z=5
Solution : The matrix form of the given system of equations is-

2 1 1] (x 1

1 -2 3| |y|=]1

3 2 4|z 5

2 31T [0
Applying R, © R, 2 1 1|y =]l
y 4_ | Z _5_
2 1 1) [x] [1]
3 2 4_ z| 5]
. 1 -2 3] [x] 1]
Applying %Rz - R, 0 21 1yl =1
_3 2 4_ LZ_ _5_
(1 -2 3] [x] 1]
Applying Ry =3R, — R, 0 1 2 |y|=|l
i 8 13_ Lz L’L_
2 3| X [
8 - E 5 }/
i g - - L4




1 =2 -3 |x 1
0 0 = 3
g L° 7z

Writing the corresponding linear equation for the above,
x-2y-3z=1
y+2z=1
3 3

—7=
8 4

From the above equation z=2, y=-3, x =1

ie x=1 y=-3 z=2

Example 25 : Solve the following system of equations by elementary transformations.
x+y+z=3
x+2y+3z=4
x+4y+9z=6

Solution ;: Writing the given system of linear equations in matrix form.
1 1 1| [x 3
1 2 3)|y|=14

1 4 9|z 6

1 1 1| |x 3]
Applymg Rl —R2 . R2 &R2 —R3 b 4 R3 ¢ -1 -2 Y| = -1
F4

0 -2 -6 ~2 ]
| 11 1] (x? {3
Ap‘plymg —Rz - Rz —'R3 o 4 R3 0 1 2 Y| = 1
2
0 -1 -3 |z -1
11 1] 3
Applying R, + Ry = R, 01 2 |y|l=|1
0 0 -1] |z 0
Now writing the corresponding linear equation for the above,
x+y+z=3
y+2z=1
-z=0

Matrices and
Determinants
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EXERCISE 1.5
Reduce the following matrices in to echelon form.
. (2 2 4 4]
[3 -10 5
) L 11 - ) 23 45
iy |- - i
3456
1 -5 2
- 45 6 7]
1 2 3 1 -3 1]
(i) (2 6 4 (iv) 12 1 4
393 6 -7 -8
Find the inverse of the following matrices by using elementary transformation-
012 2 1 1]
(B (123 (ii) 1 -2 -3
311 3 2 4
1l _1 1 2 2 2
2 "1 2 9 90 9
(i) |4 3 -1 (iv) —-‘91, -%, 1
s -3 1 -3 2
2 2 2 9 90 9
Solve the following systems of equations by mairix method (inverse of a mairix.)
X+y+z=6 x+y+z=3 x-2y+3z=11
() x-y+z=2 (ii) x+2y+3z=4 (iii) x+y-z=2
I+ y-z=1 2x+4y+9z=6 Sx+3y+2z=3
x-y+3z=9 Sx-y+z=4
(iv) x+y+z=6 (v) 3x+2y-3z=2
x-—y+z=2 5x+3y-2z=5

~ Solving the foﬂowhg system of equations by elementary row transformation (by

coeffecient matrix in echelon form).

x+y+z=3 x-2y+3z=11 2x-y+3z=9

(i) x+2y+3z=4 (i) 3Ix+y-z=2 (i) x+y+z=6
x+4y+9z=6 5x+3y+2z=3 x-y+z=2
x+y+z=4 —y+z=3 dx+y+4z=17

(iv) 2x-2y+2z=5 v) x+3y-2z=11 (vi) 2x+3y+2z=6
x—2y-~z=-3 3x-2y+4z=1 6x+9y+2z=14

. (1) x=11 y"-‘z: z=3 (Li)x=2) y=-3! z=] (1i1)x=2, y=_3, z=]

vy x=\ y=2 z=3 (v) x=1 y==-2, z=-3
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6 Linear Programming
Formulation of LPP

Chapterincludes:

Introduction

Strucfure of Linear Programming Problem (LPP)
Formulation of Linear Programming Problems

The Graphical Method of Solution

Simple Linear Programming Problems

Graphically Solving Linear Programs Problems with Two
Variables (Bounded Case)

7. Problems with Unbounded Feasible Regions

LR W

6.1 Introduction

Linear progmmming' is the general technique of optimum allocation of limited resources
" such as labour, material, machine, capital etc., to several competing activities such as
products, services, jobs, projects, etc., on the basis of given criterion of optimality.
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The term limited here is used to describe the availability of scarce resources during planning
period. The criterion of optimality generally means either performance, return on investment,
utility, time, distance ete., The word linear stands for the proportional relationship of two or
more variables in a model. Programming means ‘planning' and refers to the process of
determining a particular plan of action from amongst several alternatives, It is an extremely
useful technique in the decision making process of the management.

6.2 Structure of Linear Programming Problem (LPP)

The LP model includes the following three basic elements.

(i) Decision variables that we seek to determine.

(ii) Objective (goal) that we aim to optimize (maximize or minimize)

(1if) Constraints that we need to satisfy.

Oue of the major applications of linear algebra involving systems of linear equations is in finding
the maximum or minimum of some quantity, such as profit or cost. In mathematics the process
of finding an extreme value (maximnm or minimum) of a quantity (normally called a function) is
known as optimization . Linear programming (LP) is a branch of Mathematics which deals
with modeling a decision problem and subsequently solving it by mathematical techniques. The
problem is presented in a form of a linear function which is to be optimized (ie maximiged or
minimized) subject to & set of linear constraints. The function to be optimized is known as the
objective function .

Linear programming finds many uses in the business and industry, where a decision maker may want
to utilize limited available resources in the best possible manner. The limited resources may include
material, money, manpower, space and time. Linear Programming provides various methods of
solving such problems. In this unit, we present the basic concepis of linesr programmiing problems,
their formulation and methods of solution.

6.3 Formulation of Linear Programming Problems

Mathematically, the general linear programming problem (LPP) may be stated as:

Maximize or Minimize Z=city+eatat ...+ Calln
subject to  @11Z1 + 1222+ ... F tanTs ($,=,2) by
62121 + 6228y + ..+ 3%, (<, =,2) b2 (1)

Gm1Z1 + Gmalz + ...+ Opaly (sza 2) ben

1?1,'52,---15511?..0

where


http:mathematic.al

(i) the function Z is the objective function.
(i) z1,%2,-..,2Zn are the decision variables.
(iii) the expression (<,=,>>) means that each constraint may take any one of the three signs.
(iv) ¢; (j =1,...,n) represents the per unit cost or profit to the j** varigble.
(v} b; (=1,...,m) is the requirement or availability of the i** constraint.

(vi) z1,22,...,%n > 0 is the set of non-negative restriction on the LPP. In real life problems
negative decision variables have ne valid meaning.

In this module we shall only discuss ceses in which the constraints are strictly inequalities (either
have a < or >),

In formulating the LPP as a mathematical model we shall follow the following four steps.

1. Identify the decision variables and assign symbols to them (eg z, y, z,... or 71, T2, T3,
...). These decision variables are those quantities whose values we wish to determine.

i

2. Identify the set if constraints and express them in terms of inequalities involving the |
decision variables.

3. Identify the objective function and express it is terms of the decision variables.

4. Add the non-negabivity condition.

We will use the following product mix problem to illustrate the formulation of an LPP.

Example : Prototype Example A paint manufacturer produces two fypes of paint, one type
of standard quality (S) and the other of top quality (T). To make these paints, he needs two ingre-
dients, the pigment and the resin. Standard quality paint requires 2 units of pigment and 3 units of
resin for each unit made, and is sold ot a profit of RI per unit. Top quality patnt requires 4 units
of pigment and 2 units of resin for each unit made, and is sold at o profit of R1.50 per unit. He
has stocks of 12 units of pigment, and 10 units of resin. Formulate the above problem as o linear
programming problem to maximize his profit?

We make the following table from the given data.

| Product Available
Ingredients | S-Type | T-Type | Stock |
Pigment 2 4 12
Resiu 3 2 10
Profit (R/Unit) | 1.0 1.5

We follow the four steps outlined above for solving LP problems.

1. In our prototype Example , the number of units of S-type and T-type paint are the decision
variables.

Linear Programaing
Formulation of LI}

Self-fnstructigmal Mairrial

215



Business Mathematics

316

2. The first constraint is the number of units of pigment available, while the second constraint
is the number of units of resin available. It is required that the total pigment and resin used
does not exceed 12 and 10, respectively.

Pigment: for Sis2 | Resi;i S=3
for T is 4 T=2

Therefore the required mathematical expressions for the constraints are

3. If we let P be the profit, then the objective in our example is to maximize profits
P=S8+15T,

i.e. the number of units of § times R1 plus the mumber of units of T times R1.5 .

4. In addition to the given constraints, there are nonnegativity constraints which ensure that the
solution i3 meaningful. This is a requirement that whatever the decision, the decision variables
should not be negative.

§20,7T>0

We can now write the complete mathematical model of the problem described in Exa.mble a8

Maximise: P =S+ 15T

Subject to: 25 +4T <12 (@)
Ig+2T <10
§20,T>0

The above problem is an example of & maximization LPP. Maximization LPPs are usually identified
by the < in all the constraints. Minimization problems can be identified by a > in all the constraints.

In the next example we formulate a minimization LPP.

Example:

(Diet problem) A house wife wishes to miz two types of food Fy and Fy in such ¢ way that the
vitamin contents of the mizfure contain ot least § units of vitamin A and 11 units of vitamin B.
Food F\ costs F60/Kg and Food F; costs E80/kg. Food Fy contains 3 units/kg of vitamin A and §
units/kg of vitamin B while Food Fy contains 4 units}kg of vitamin A and 2 units/kg of vitamin B.
Formulate this problem ag a linear programming problem to minimize the cost of the miztures.

We make the following table from the given data.

Vitamin Food {in Kg) | Requirement
content F Fy {in units)
Vitamin A {units/kg) 4 8
Vitamin B (units/kg) 5 2 i1
Cost (E/Kg) | 60 80


http:addition.to

In formulating the LPP we use the following steps:
1. The number of kilograms of the foods Fy and F; contained in the mixture are the decision
variables. Let the mixture contain z; Kg of Food F} and z; Kg of food F;.

2. In this example, the constraints are the minimum requirements of the vitamins. The minirgum
requirement of vitamin A is 8 units. Therefore

33.’21 + 42?2 2 8
Similarly, the minimym requirement of vitamin B is 11 units. Therefore,

921+ 229 2 11

3. The cost of purchasing 1 Kg of food Fy is E60Q.
The cost of purchasing 1 Kg of food F; is E8.
The total cost of purchasing x; Kg of food F; and z9 Kg of food F5 is

C = 60x; + 80z,

which is the objective function.

4. The non-negativity conditions are
120, 2220

Therefore the mathematical formulation of the LPP is

Minimize: € = 60z; + 80z,

Subject to: 3z +4z0 > 8
5Ty + 2z > 11
7120,2220

6.4 The Graphical Method of Solution

The graphical method of solving a linear programming problem is used when there are only two
decision variables. If the problem has three or more variables, the graphical method is not suitable.
In that case we use the simplex method which is discussed in the next section.

We begiu by giving some important definitions and concepts that are used in the methods of solving
linear programiing problems.

1. Solution A set of values of decision variables satisfying all the constraints of a linear pro-

gramming problem is called a solution to that problem.

2. Feasible solution Any solution which also satisfies the non-negativity restrictions of the
problem is called a feasible solution.

3. Optimal feasible solution Any feasible solution which maximijzes or minimizes the objective
function is called an optimal feasible solution.

Linear Programming
Formulation of LPP
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4. Feasible region The common region determined by all the constraints and non-negativity
restriction of a LPP is called a feasible region.

5. Corner point A corner point of a feasible region is a point in the feasible region that is
the intersection of two boundary lines.

The following theorem is the fundamental theorem of linear programming .

Theorem : If the optimal value of the objective function in a linesr programming problem
exists, then that value must occur at one (or more) of the corner points of the feasible region.

To solve a linear programming problem with two decision variables using the graphical method we
use the procedure outlined below;

Graphical method of solving a LPP

Step 1.  Formulate the linear programming problem.

Step 2. Graph the feasible region and find the corner points.
The coordinates of the corner points can be obtained by
either inspection or by solving the two equations of
the lines intersecting at that point.

Step 3. Make a table listing the value of the objective function
at each corner point.

Step4.  Determine the optimal solution from the table in step 3.

If the problem is of maximization (minimization) type, the solution

corresponding to the largest (smallest) value of the objective

function is the optimal solution of the LPP.

We will now use this procedure to solve some LPP where the model has already been determined.
We use example (0.1.1) for illustration purposes The graph of the LPP is shown in Figure 1.
Step 2
The boundary of the feasible region consists of the lines obtained from changing the ine-urkiriss to
equalities; i.e. The lines

29+4T =12 and 35+2T'=10

Step 3
The corner points {or extreme points) and their corresponding objective functional va'ues are.

Extreme Pomts Profit (P = § + 1.5T)

(0,0) 0
(3.0 3
(2,2) 5
(0,3) 45

Step 4

We therefore deduce that the optimal solution is § = 2,T = 2 corresponding to a prodt P = 5.
Thus profits are maximized when 2 units of standard quality and 2 units of top quality type paint
are produced.



Figure 1: Graphical solution of the model of prototype example

Example:

A furniture company produces inezpensive tables and chairs. The production process for each is
similar in that both reguire a certain number of hours of earpentry work and a certain number of
labour hours in the painting department.

Each table takes 4 hours of carpeniry and 2 hours in the painting depariment. Each chair requires
3 hours of carpentry and 1 hour in the painting department. During the current production period,
240 hours of zarpentry time are available and 100 hours in painting is aveilable. Each table sold
yields a profit of E7; each chair produced is sold for a E5 profit.

Find the best combination of tables and chairs to manufacture in order to reach the mazimum profit.

Sc.ution:

We begin by summarizing the information needed to solve the problem in the form of a table. This
helps us understand the problem being faced.

Hours required

to make 1 Unit
Department | Tables Chairs Available Hours
Carpentry 4 3 240
Painting 2 1 100
Profit 7 5 T

The objective is to mazimize profit.

Linear Programming
Formulation of LPP
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The constraints are

1. The hours of carpentry time used cannot exceed 240 hours per week.
2. The hours of painting time used cannot exceed 100 hours per week.
3. The number of tables and chairs must be non-negative.
The decision varables that represent the actual decision to be made are defined as

¥y = number of tables to be produced
zz = number of chairs to be produced

Now we can state the linear programming (LP) problem in terms of 2, and z3 and Profit (P).

mazrimize P =Tz, + 5z {Objective function}
subject to 4z + 3x2 < 240 (hours of carpentry constraint)
251 + 24 < 100 fhours of painting constraint)
2120, 2220 (Non-negativity constraint)

To find the optimal solution lo this LP using the graphical method we first identify the region of
feasible solutions and the corner points of the of the feasible region. The graph for this ezample is
plotted in figure (2)

In this example the comer points are (0,0}, (50,0), (30,40) and (0,80). Testing these corner points

on P =Tz 4 3z9 gives
Corner Point L Profit

0,0) 0
(50,0) 350
(30,40) | 410
(0,80) 400

Because the point (30,40) produces the highest profit we conclude that producing 30 tables and 40
chairs will yield a mazimum profit of E410.

Example:

A small brewery produces Ale and Beer. Suppose that production is limited by scarce resources of
corn, hops and barley malt. To make Ale Skg of Corn, kg of hops and 35ky of malt are required.
To make Beer 15kg of corn, § kg of hops and 20kg of malt are required. Suppose that only 480 kg of
corn, 160kg of hops and 1190 kg of malt are available. If the brewery makes a profit of E18 for each
kg of Ale and E23 for each kg of Beer, how much Ale.and Beer should the brewer produce in order
to marimize profit?

Solution:

The given information is summarized in the teble below.



110 T T T T T T

0 10 20 30 ) 50 60 70
o

Figure 2: Graphical solution of the carpentry/painting model

Beverages | Available
Ingredients | Ale | Beer | quantity
Com(Kg) | 5 | 15 480
Hops (Kg) 4 | 4 | 160
Malt (Kg) | 35 | 20 1190
Profit 13| 23

The deciston variables are

1. x; the amount of Ale to be produced.

2.z, the amount of Beer to be produced.

The profit function is given by P = 13z, +23zq. Thus the LP problem can be formulated as follows:

Mazimize P =13z, + 23z,
Subject to 5z + 15z, < 480
4z, + 4z <160

35z; + 20z, < 1190
£ 20, 2220

Linear Programming
Formulation of LPP
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Figure 3: Graphical solution of the brewery model

The graph for this ezample is plotted in figure (3)

The corner points in this ezample are (0,0), (0,32), (12,28), (26,14) and (34,0). Testing these

corner points on P =13z, + 23z, gives

Corner Point

Profit

(0,0)
(0,32)
(12,28)
(26,14)
(34,0)

0
736
800
660
442

Because the point (12,28) produces the highest profit we conclude that producing 12 Ky of Ale and

28 Kg of Beer will yield a moximum profit of E800.

Example: (Medicine) A patient in a hospital is required to have at least 84 units of drug
A and 120 units of drug B each day. Each gram of substance M contains 10 units of drug A end 8
units of drug B, and each gram of substance N contains 2 units of drug A and 4 units of drug B.
Now suppose that both M and N contain an undesirable drug C, 8 units per gram in M and 1 unit
per gram in N. How many grams of substances M and N should be mized to meet the minimum daily
requirements at the same time minimize the intake of drug C¥ How many units of the undesirable

drug C will be in this mizture?

Solution: We start by summarizing the given data in the following table;



| AMOUNT OF DRUG PER GRAM | MINIMUM DAILY |

Substance M Substance N REQUIREMENT
Drug A 10 Units 2 units 84 units
Drug B| 8 units 4-units | 120 units
Dryg C 3 units I unit

To form the mathematical model, we start by identifying the deciston variables.

Let:  xzy = Number of grams of substance M used.
Iy Number of grams of substance N used.

]

The ouycchwe 18 to minimize the intake of drug C. In terms of the decision variables, the objective
function i

C=3 1+ 22
which gives the amount of the undesirable drug C in z1 grams of M and z grams of N.
The following condstions must be satisfied to meet daily requirements:

Number of units of Number of units of
( drug A ) + ( drug A ) 284
tn Ty grams of substance M in T3 grems of substance N )
{ Number of units of Number of units of
drug B ) + ( drug B ) > 120
\ in z; grams of substonce M in 5 grams of substance N

(Number of grams of substance M used) > 0
(Number of grams of substance N used} > 0

Writing the above constraint inegualities in terms of the decision variables z, and z3 and including
the objective funchion we obtain the following linear programming model.

Minimize C=3z +1;

Subject to 10z, + 2z, > 84
Bx) +4z2 2 120
2120, 2220

Figure { shows the graph of the feasible region obtained by plotting the system of inequalities. The
evaluation of the objective function at each corner point is show in the table below.

CORNER POINT

(71, 22) C=31+2,
(0,42) 42

(4,22) 34

(15,0) i5

Linear Programming
Formulation of LPP
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Figure 4: Graphical solution of the medicine minimization example

The graphical method is the easiest way to solve a small LP problem. However this method is useful
only when there are two decision variables. When there are more than two decision variables, it is
not possible to plot the solution on & two-dimensional graph and we must turn to more conplex
methods.

The graphical nature of the above method makes its use limited to problems involving only two
decision variables. For such problems it is possible to represent the constraints graphically. A
graphical solution for a problem with a higher number of decision variables than two cannot be
practically obtained because of the complexity of the graphs in higher dimensional spaces. An
additional limitation of this method is that if the graph is not good, the answer may be very
inaccurate.

A very useful method of solving linear programming problems of any size is the so called Simplex
method. The use of computers has made this method a viable tool for solving linear programming
problems involving a very large number of decision variables.

6.5 Simple Linear Programming Problems

When both the objective and all the constraints in Expression are linear functions,
then the optimization problem is called a linear programming problem. This has the general
form:

( max 2(1131,...,2:“) =% FoootCaTy
st apnzy+ o+ 81a%, S by

¢ Gy Ly + e Amnln S bm
huzy + -+ by =1y

L huzy +-- 4 hintn =11



Definition (Linear Function). A fuuction z : R® — R is linear if there are constants
€1, -,Cn € R 50 that:

z(zll"'lzﬂ) =0Tt Falp

Lemma (Linear Function). If z : R® — R is linear then for all x{, %, € R™ and for oll
scalar constants o € R we have:

2(x1 + Xp} = 2(Xy) + 2(x3)

z{ax)) = az(x,)

Exercise Prove Lemms 2.2

For the time being, we will eschew the general! form and focus exclusively on linear pro-
gramming problems with two veriables. Using this limited case, we will develop a graphical
method for identifying optimal solutions, which we will generalize later to problems with
arbitrary numbers of variables.

Example. Cousider the problem of a toy company that produces toy planes and toy
boets. The toy company can sell its planes for $10 and its boats for $8 dollars. It costs $3
in raw materials to make a plane and $2 in raw materials to make a boat. A plane requires
3 hours to make and 1 hour to finish while 8 boat requires 1 hour to meke and 2 hours to
finish. The toy company knows it will not sell anymore than 35 planes per week. Further,
given the number of workers, the company cannot spend anymore than 160 hours per week
finishing toys and 120 hours per week making toys. The company wishes to maximize the
profit it makes by choosing how much of each toy to produce.

We can represent the profit maximization problem of the company as a linear program-
ming problem. Let z; be the number of plenes the company will produce and let z; be
the number of boats the company will produce. The profit for each plane is $10 — $3 = $7
per plane and the profit for each boat is $8 — $2 = $6 per boat. Thus the total profit the
company will make is:

Z(Il,l'g) = Tx; + 625

The company cen spend no more than 120 hours per week making toys end since & plane
takes 3 hours to make and & boat takes 1 hour to meke we have:

3z, + 19 <120

Likewise, the company ¢an spend no more than 160 hours per week finishing toys and since
it. takes 1 hour to finish & plane and 2 hour to finish & boat we have:

1+ 225 < 160 -

Finally, we know that z; < 35, since the company will meke no more than 35 planes per
week. Thus the complete linear programming problem is given as:
((‘max z({zy,%z) = TZ1 + 622
s.t. 3z + 39 <120
z; + 225 < 160
T <35
;>0
Iy > )

Linear Programming
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Exercise. A chemical manufacturer produces three chemicals: A, B and C. These chem-
ical are produced by two processes: 1 and 2. Running process 1 for 1 hour costs $4 and yields
3 units of chemical A, 1 unit of chemical B and 1 unit of chemical C. Running process 2 for
1 hour costs §1 and produces 1 units of chernical A, and 1 unit of chemical B (hut none of
Chemical C). To meet customer demand, at least 10 units of chemical A, 5 units of chemical
B and 3 units of chemical C must be produced daily. Assume that the chemical manufacturer
wants to minimize the cost of production. Develop a linear programming problem describing
the constraints and objectives of the chemical manufacturer. [Hint: Let z; be the amount
of time Process | is executed and let 9 be amount of time Process 2 is executed. Use the
coefficients above to express the cost of running Process 1 for 2, time and Process 2 for z,
time. Do the same to compute the amount of chemicals A, B, and C that are produced.|

Modeling Assumptions in Linear Programming

Inspecting Example (or the more general Problem) we can see there are several
assumptions that must be satisfied when using a linear programming model. We enumerate
these below:

Proportionality Assumption: A problem can be phrased as a linear program only if
the contribution to the objective function and the left-hand-side of each constraint
by each decision variable (zy;...,2,) is proportional to the value of the decision
variable.

Additivity Assumption: A problem can be phrased as a livear programming prob-
lem only if the contribution to the objective function and the left-hand-side of each
constraint by any decision variable z; (i = 1,...,n) is completely indepeadent of
any other decision variable z; (j # ) and additive.

Divisibility Assumption: A problem can be phrased as a linear programming prob-
lem only if the quantities represented by each decision variabie are infinitely divisible
(ie., fractional answers make sense).

Certainty Assumption: A problem can be phrased as & linear programming prob-
lem only if the coefficients in the objective function and constraints are known with
certainty.

The first two assumptions simply assert (in English) that both the objective function and
functions on the left-hand-side of the (in)equalities in the constraints are linear functions of
the variables z, ..., 2y,

The third essumption asserts that a valid optimal answer could contain fractional values
for decision variables. Jt’s important to understand how this assumption comes into play-
even in the toy making example. Many quantities can be divided into non-integer values
{ounces, pounds etc.) but many other quantities cannot be divided. For instance, cin we
really expect that it’s reasonable to make 1/2 a plane in the toy making example? When
values must be constrained to true integer values, the linear programming problem is called an
integer programming problem.

6.6 Graphically Solving Linear Programs Problems with Two
Variables (Bounded Case)

Linear Programs (LP's) with two variables can be solved graphically by plotting the
feasible region along with the level curves of the objective function. We will show that we
can find a point in the feasible region that maximizes the objective function using the level
curves of the objective function. We illustrate the method first using the problem from
Example.



Example (Continuation of Example ). Let’s continue the example of the Toy Maker
begin in Example. To solve the linear programming problem graphically, begin by draw-
ing the feasible region. This is shown in the blue shaded region of Figure.

166 150
140
10

100

Figure Feasible Region and Level Curves of the Objective Function: The
shaded region in the plot is the feasible region and represents the intersection of
the five inequalities constraining the values of z; and zp. On the right, we see the
optimal solution is the “lagt” peint in the feasible region that intersects a level set
as we move in the direction of increasing profit.

After plotting the feesible region, the next step is to plot the level curves of the objective
function. In our problem, the leve] sets will have the form:
-7 4

= _ = —— —
Tz, + 6z =¢ 22 5 :c1-|—6

This is & set of parellel lines with slope —7/6 and intercept ¢/6 where ¢ can be varied as
needed. The level curves for various values of ¢ are parallel lines. In Figure they are
shown in colors ranging from red to yellow depending upon the value of ¢. Larger valucs of
¢ are more yellow.

To solve the linear programming problem, follow the level sets elong the gradient (shown
85 the black arrow) until the last level set (line) intersects the feasible region. If you are
doing this by hand, you can draw a single line of the form 7z; + 6z; = ¢ end then siriply
draw parallel lines in the direction of the gradient (7,6). At some point, these lines will fail
to intersect the feasible region. The last line to intersect the feasible region will do so at &
point that maximizes the profit. [n this case, the point that meximizes z(21,27) = Tx; 4523,
subject to the constraints given, is (z}, 25} = (16,72).

Note the point of optimality (z},z3) = (16, 72) is at a corner of the feasible region. This
corner i§ formed by the intersection of the two lines: 3z + 2, = 120 and z; + 2x; =160, [n
this case, the constraints

321 + 7, < 120
z1+ 220 < 160

are both binding, while the other constraints are non-binding. In general, we will see that

when an optimal solution to & linear programming problem exists, it will always be at the

intersection of several binding constraints; that is, it will occur at a corner of a higher-
dimensional polyhedron.

Linear Progrumming
Formulatii:n of L PP
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Formalizing The Graphical Method
In order to formalize the method we've shown above, we will require a few new definitions.

Definition Let v € R, r > 0 be 8 non-negative scalar and let x, € R be a point in
R™. Then the set:

Bi(xo) = (x € K"l [lx— x| <7}
is called the closed ball of redius v centered af point x¢ in R™.

In B2, a closed bail is just a disk and its circular boundary centered at xq with radius r.
In B3, & closed ball is a solid sphere and its spherical centered at x; with radius r. Beyond
three dimensions, it becomes difficult to visualize what a closed ball looks like.

We can use a closed ball to define the notion of boundedness of e fessible region:

Deflnition Let S C R™ Then the set S 18 bounded if there exists an xg € R™ and finite
7 > 0 such that S is totally contained in B.(xo); that is, S C B.{x).

Definition is illustrated in Figure. The set S is shown in blue while the ball of
radius r centered at x, is shown in gray.
We can now define an algorithm for identifying the solution to a linear programing
problem in two variables with a bounded feasible region (see Algorithm 1):
The example linear programming problem presented in the previous section has a single
optimal solution. In general, the following outcomes can ‘occur in solving a linear program-
ming problem:

{1) The linear programming problem has a unique solution. {We’ve already seen this.)
(2) There are infinitely many alternative optimal solutions.
{3) There is no solution and the problem’s objective function can grow to positive
infinity for maximization problems (or negative infinity for minimization problems).
{4) There is no solution to the problem at all.
Case 3 above can only occur when the feasible reglon is unbounded; that is, it cannot be
surrounded by a ball with finite radius. We will illustrate each of these posmble outcomes in
the next four sections. We will prove that this is true in a later chapter.

Figure A Bounded Set: The set S (in blue) is bounded because it can be
entirely contained inside a ball of a finite radius » and centered at some point xq.
In this example, the set S is in R*, This figure also Hlustrates the fact that a ball
in R? is just a disk and its boundary.



Algorithm for Solving a Linear Programming Problem Graphically
Bounded Feasible Region, Unique Solution )

(1) Plot the feasible region defined by the constraints.

(2) Plot the level sets of the objective function.

(3) For a maximization problem, identify the level set corresponding the greatest (least, for
minirnization) objective function value that intersects the feasible region. This point
will be at a eorner.

(4) The point on the corner intersecting the greatest (least) level set is a solution to the
linear programming problem.

Algorithm 1. Algorithm for Solving a Two Variable Linear Programming Problem
Graphically-Bounded Feasible Region, Unique Solution Case

Example. Suppose the toy maker in Example finds that it can sell planes for a
profit of $18 each instead of $7 each. The new linear programming problem becomes:

[ mex z(xy,%;) = 18z, + 6z,
st 3z +x0 <120

T + 2z £ 160

71 €30

20

2, >0

Applying our graphical method for finding optimal solutions to linear programming problems
yields the plot shown in Figure. The level curves for the function 2(z,,z;) = 18z, + 622

are parallel to one face of the polygon boundary of the feasible region. Hence, as we move
further up and to the right in the direction of the gradient (corresponding to larger and
larger values of z(z1, %)) we see that there is not one point on the boundary of the feasible
region that intersects that level set with greatest value, but instead a side of the polygon
boundary described by the line 3z; + z; = 120 where z; € [16,35]. Let:

S = {(z1, 22)|3z; + 72 < 120, z; + 225 < 160, 2, < 35, 71,25 > 0}

that is, S is the feasible region of the problem. Then for any value of z} € [16,35] and any
value 4 so that 3z} + z3 = 120, we will have 2(z7,z%) > z(z,,z;) for all (z;,2;) € S. Since
there are infinitely many values that z;, and z, may take on, we see this problem has an
infinite number of alternative optimal solutions.

Based on the example in this section, we can modify our algorithm for finding the solution
to a linear programming problem graphically to deal with situations with an infinite set of
alternative optimal solutions (see Algorithm 2);

Algorithm for Solving a Linear Programming Problem Graphicaily
Bounded Feasible Region

(1) Plot the feasible region defined by the constraints.

(2) Plot the level seta of the objective function.

(3) For a maximization problem, identify the level set corresponding the greatest (least, for
minimization) objective function value that intersects the feasible region. Thig point
will be at a corner.

(4) The point on the corner intersecting the greatest (least) level set is a solution to the
linear programming problem.

(5) If the level set corresponding to the greatest (least) objective function value
is paralle] to a side of the polygon boundary next to the corner identified,
then there are infinitely many alternative optimal solutions and any point
on this side may be chosen as an optimal solution.

Linear Programming
Formulation of LPP
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Algorithm 2. Algorithm for Solving a Two Variable Linear Programming Problem
Graphically-Bounded Feasible Region Case

Exercise. Modify the linear programming problem from Exercise to obtain a linear
programming problem with sn infinite number of alternative optimal solutions. Solve the

160

140

Figure. An example of infinitely many alternative optimal sotutions in a linear
programming problem. The level curves for z(zy, z2) = 18z, + 6z, are parallel to
one face of the polygon boundary of the feasible region. Moreover, this side contains
the points of greatest value for z(z|, zo) inside the feasible region. Any combination
of (z1,x2) on the line 3z +z2 = 120 for ; € [16, 35) will provide the largess possible
value z(xzy,xz} can take in the feasible region S.

new problem and obtain a description for the set of alternative optimal solutions. [Hint:
Just as in the example, z; will be bound between two value corresponding to a side of the
polygon. Find those values and the constraint that is binding. This will provide you with a
description of the form for any z} € [a,b] and &7 is chosen so that cx} + dzb = v, the point
(z},3) is an alternative optimal solution to the problem. Now you fill in values for a, b, ¢,
d and v

Problems with No Solution

Recall for any mathematical programming problem, the feasible set or region is simply
& subset of R®. If this region is empty, then there is ao solution to the mathematical
programming problem and the problem is said to be over constrained. We illustrate this
case for linear programming problems with the following example.

Example. Consider the following linear programming problem:

[ mex z(zy,z3) = 32 + 22

¢ I T
J 3--401+60$2_

1 1
g‘o-xl + 50
T2 30

1112220

$2<1
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The level sets of the objective and the constraints are shown in Figure.

Figure. A Linear Programming Problem with no solution. The feasible region
of the linear progremming problem is empty; that is, there are no values for x; and
z; that can simultaneously satisfy all the constraints. Thus, no solution exists.

The fact that the feasible region is empty is shown by the fact that in Figure there is
no blue region-i.e., all the regions are gray indicabing that the constraints sre not satisfiable.

Based on this example, we can modify our previous algorithm for finding the solution to
linear programming problems graphically (see Algorithm 3):

Algorithm for Solving a Linear Programming Problem Graphically
Bounded Feasible Region ‘

(1) Plot the feasible region defined by the constraints.

(2) If the feasible region is empty, then no solution exists.

(3) Plot the level sets of the objective function.

(4) For a maximization problem, identify the level set corresponding the greatest (least, for
minimization) objective function value that intersects the feasible region. This point
will be at a corper.

(5) The peint on the corner intersecting the greatest (least) level set is a solution to the
linear programming problem.

(6) If the level set corresponding to the greatest (least) objective function value
is parallel to a side of the polygon boundary next to the corner identified,
then there are infinitely many alternative optimal solutions and any point
on this side may be chosen as an optimal solution.

Algorithm 3. Algorithm for Sclving & Two Variable Linear Programming Problem
Graphically-Bounded Feasible Region Case

Linear Programmin.
Formulanon of LI'F
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6.7 Problems with Unbounded Feasible Regions

Again, we’ll tackle the issus of linear programming problems with unbounded feasible
regions by illustrating the possible outcomes using examples.

Example. Consider the linear programming probiem below.
max 2(z, %) = 22 — 3
8t T3 —19 <1
22142026
T1,22 20

The feasible region and level curves of the objective function are shown in Figure. The

15

Figure. A Linear Programming Problem with Unbounded Feasible Region:
Note thet we can continue to make level curves of 2(x), z3) corresponding to larger
and lerger values as we move down and to the right. These curves will continue
to intersect the feasible region for any value of v = 2{z;,z2) we choose. Thus, we
can make z(x1, z2) a8 large as we want and still find a point in the feasible region
that will provide this value. Hence, the optimal value of z{z,x2) subject to the
constraints +c0. That is, the problem is unbounded.

feasible region in Figure is clearly unbounded since it stretches upward along the z axis
infinitely far and also stretches rightward elong the z; axis infinitely far, bounded below by
the line z; — zz = 1. There is no way 10 enclose this region by a disk of finite radius, hence
the feasible region is not bounded.

We can draw more level curves of z(z;,2,) in the direction of increase (down and to the
right) as long as we wish. There will always be an intersection point with the feasible region
because it is infinite. That is, these curves will continue to intersect the feasible region for
any value of v = 2(x;,2,) we choose. Thus, we can make z(r,,7;) a8 large ss we want and
still find & point in the feasible region that will provide this velue. Hence, the largest value



2(2y,25) can take when (z;,z;) are in the feasible region is +00. That is, the problem is
unbounded.

Just because a linear programming problem has an unbounded feasible region does not
imply that there is not a finite solution. We illustrate this case by modifying example.

Example , (Continuation of Example ). Consider the linéar programming problem
from Example with the new objective function: z(z;,z,) = (1/2)z) — zo. Then we have
the new problem:

1

mex z{z), ;) = 5:1:1 — Iy

st 1y —-12 %51
26 +1222>6
zlstZO

The feasible region, leve! sets of z(z;,2,) and gradients are shown in Figure. In this
case note, that the direction of increase of the objective function is away from the direction
in which the feasible region is unbounded (i.e., downward). As a result, the point in the
feasible region with the largest z(z,,z;) value is (7/3,4/3). Again this is a vertex: the
binding constraints are z; — 2, = 1 and 22) 4+ 25 = 6 and the solution occurs at the point
these two lines intersect.

0 5 10 it 2
.Zl
Figure, A Linear Programming Problem with Unbounded Feagible Region
and Finite Solution: In this problem, the level curves of z(z1,z7) increase in a more
“solthernly” direction that in Example -that is, away from the direction in
which the feasible region increases without bound. The point in the feagible region
with largest z(zy, ) value is (7/3,4/3). Note again, this is a vertex.

Linear Programming
Formulation of LPP



Ausiness Mathematics Based on these two examples, we can modify our algorithm for graphically solving a
two varisble linear programming problers to deal with the case when the feasible region is
unbounded.

—- ,
Algorithm for Solving a Two Variable Linear Programming Problem Graphically

(1) Plot the feasible region defined by the constraints.

(2) If the feasible region ig empty, then no solution exists.

(3) If the feasible region is unbounded goto Line 8. Otherwise, Goto Line 4.
4

)

Plot the level gets of the objective function.

For a maximization problem, identify the level set corresponding the greatest (least, for

minimization) objective function value that intersects the feasible region. This point

will be at a corner.

{6) The point on the corner intersecting the greatest (least) level set is a solution to the
linear programming problem.

(7) If the level set corresponding to the greatest (least) objective function valne
is parallel to a side of the polygon boundary next to the corner identified,
then there are infinitely many alternative optimal solutions and any polnt
on this side may be chosen as an optimal solution.

{8) (The feasible region is unbounded): Plot the level sets of the objective function.

(9) If the level sets intersect the feasible region at larger and larger {smaller and smaller for
a minimization problem), then the problem is unbounded and the solution iz +oo (—c0
for minimization problems).

{10) Otherwise, identify the level set corresponding the greatest (least, for minimization)
objective function value that intersects the feasible region. This point will be at a
COTDET.

{11) The point on the corner intersecting the greatest (least) level set ia a solution to the iin-

ear programming problem. If the level set corresponding to the greatest (least)

objective function value is parallel to a side of the polygon boundary next
to the corner identified, then there are infinitely many alternative optimal
solutions and any point on this side may be chosen as an optimal solution.

3
4
5

Algorithm . Algorithm for Solving a Linear Programming Problem Graphically-
Bounded and Unbounded Case




Exercise: Linear Progranmmie
Fooemylation of LR

Use the graphical method to solve each of the following LP problems.

1. A wheat and barley farmer has 168 hectare of ploughed land, and a capital of E2000. It costs
E14 to sow one hectare wheat and E10 to sow one hectare of barley. Suppose that his profit is
E80 per hectare of wheat apd E55 per hectare of barley. Find the optimal number of hectares
of wheat and barley that must be ploughed in order to maximize profit? What is the maximum
profit? [80,88], Profit E11 240

2. An company manufactures two electrical products: air conditioners and large fans. The as-
sembly process for each is similar in that both require a certain amount of wiring and drilling.
Biach eir conditioner takes 3 hours of wiring and 2 hours of drilling. Each fan must go through
2 hours of wiring and 1 hour of drilling. During the next production period, 240 hours of wiring
time are available and up to 140 hours of drilling time may be used. Each air conditioner sold
vields a profit of E25. Each fan assembled may be sold for a profit of E15. Formulate and
gsolve this linear programming mix situation to find the best combination of air conditioners
and fans that yields the highest profit. [40 air conditioners, 60 fans, profit E1900|

3. A manufacturer of lightweight mountain tents makes a standard model and an expedition
model for national distribution. Each standard tent requires 1 labour hour from the cutting
department and 3 labour hours from the assembly department. Each expedition tent requires 2
labour hours from the cutting department and 4 labour hours from the assembly department.
The maximum labour hours available per day in the cutting department ard the assembly
department are 32 and 84 respectively. If the company makes a profit of E50 on each standard
tent and E80 on each expedition tent, use the graphical method to determine how many tents
of each type should be manufactured each day to maximize the total daily profit?  [E1480]

4. A menufacturing plant makes two types of inflatable boats, a two-person boat and a four-
person boat. Each two-person boat requires 0.9 Iabour hours from the cutting department
and 0.5 labour hours from the assembly department. Each four-person boat requires 1.8
labour hours from the cutting department and 1.2 labour hours from the assembly department.
The maximum labour hours available per month in the cutting department and the assembly

" department are 864 and 672 respectively. The company makes a profit of E25 on each two-
person bost and £40 on each four-peison boat. Use the graphical method to find the maximum
profit. [E21 600]

5. LESCO Engineering produces chairs and tables. Each table takes four hours of labour from
the carpentry department and two hours of labour from the finishing department. Each chair
requires three hours of carpentry and one hour of finishing. During the current week, 240
hours of carpentry time are available and 100 hours of finishing time. Each table produced
gives a profit of E70 and each chair & profit of E50. How many chairs and tables should be
made in order to maximize profit? ' [40,30], P = 7410

6. A company manufactures two products X and Y. Each product has to be processed in three
departments: welding, assembly and painting. Each unit of X spends 2 hours in the welding
department, 3 hours in assembly and 1 hour in painting. The corresponding times for a unit
of Y are 3,2 and 1 respectively. The man-hours available in a month are 1500 for the welding
department, 1500 in assembly and 550 in painting. The contribution to profits and fixed

Sell-Instructiopul Moserel
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overheads are E100 for product X and E120 for product Y. Formulate the appropriate linear
programing problem and solve it graphically to obtain the optimal solution for the maximum
contribution. (150, 400], P = 63000

Suppose & manufacturer of printed circuits has a stock of 200 resistors, 120 transistors and 150
capacitors and is required to produce two types of circuits.

Type A requires 20 resistors, 10 transistors and 10 capacitors.
Type B requires 10 resistors, 20 transistors and 30 capacitors.

If the profit on type A circuits is E5 and that on type B circuits is E12, how many of each
circuit should be produced in order to maximize profit? (6,3, P = 66

A small company builds two types of garden chairs.
Type A requires 2 hours of machine time and 5 hours of crafisman time.
Type B requires 3 hours of machine time and 5 hours of craftsman time.

Each day there are 30 hours of machine time available and 60 hours of craftsman time. The
profit on each type A chair is E60 and on each type B chair is E84. Formulate the appropri-
ate linear programming problem and solve it graphically to obtain the optimal soluiion that
maximizes profit. [6,6], P = 864

Namboard produces two gift packages of fruit. Package A contains 20 peaches, 15 apples and
10 pears. Package B contains 10 peaches, 30 apples and 12 pears. Namboard has 40 000
peaches, 60 000 apples and 27 000 pears available for packaging. The profit on package A is
E2.00 and the profit on B is £2.50. Assuming that all fruit packaged can be sold, what number
of packages of types A and B should be prepared to maximize the profit? [750 type A, 1625

type B|
A factory manufactures two products, each requiring the use of three machines. The first

machine can be used at most 70 hours; the second machine at most 40 hours; and the third
machine at most 90 hours. The first product requires 2 hours on Machine I, 1 hour on Machine

- 2, and 1 hour on Machine 3; the second product requires 1 hour each on machines 1and 2 and

3 hours on Machine 3. If the profit in E40 per unit for the first product and E60 per unit
for the second product, how many units of each product should be manufactured to maximize
profit? (24,22, P = 2280]



Exercises : Minimization problems Linear Programming
Farmulation of LPP

1. A house wife wishes to mix together two kinds of food, I and II, in such a way that the mixture
contains at least 10 units of vitamin A, 12 units of vitamin B and 8 units of vitamin C. The
vitamin contents of one kg of food is given below;

Vitamin A | Vitamin B | Vitamin C
Food I 1 2 3
Food I 2 2 1

One Kg of food I costs E6 and one Kg of food II costs E10. Formulate the above problem as
& linear programming problem and find the least cost of the mixture which will produce the
diet. : [2,4, cost = E52]

2. A chicken farmer can buy & special food mix A at 20¢ per Kg and special food mix B at 40¢ per
Kg. Each Kg of mix A contains 3000 units of nutrient N7 and 1000 units of nutrient N;; each
Kg of mix B contains 4000 units of nutrient Ny and 4000 units of nutrient Nz. If the minimum
daily requirements for the chickens collectively are 36000 units of nutrient &, and 20000 units
of nutrient Nz, how many pounds of each food mix should be used each day to minimize daily
food costs while meeting (or exceeding) the minimum daily nutrient requirements? What is
the minimum daily cost? [Bkg of mix A, 3 kg of mix B; C = E2.80 per day]

3. A former can buy two types of plant food, mix A and mix B. Each cubic metre of mix A
contains 20 kg of phosphoric acid, 30 kg of nitrogen, and 5 kg of potash. Each cubic metre of
mix B contains 10 kg of phosphoric acid, 30 kg of nitrogen and 10 kg of potash. The minimum
monthly requirements are 460 kg of phosphoric acid, 960 kg of nitrogen, and 220 kg of potash.
If mix A costs E30 per cubic metre and mix B costs E35 per cubic metre, how many eubic
metres of each mix should the farmer blend to meet the minimum monthly requirements at &
minimal cost? What is the cost? [20 m3, 12 m?®, E1020]

4. A city council voted to conduct a study on inner city community problems. A nearby university
was contacted to provide sociologists and research assistants. Allocation of time and costs per
week are given in the table. How many sociologists and how many research assistants should
be hired to minimize the cost and meet the weekly labour-hour requirements? What is the
weekly cost?

LABOUR HOURS | MINIMUM LABOUR-
Research | HOURS NEEDED
Sociologist  Assistant PER WEEK
FIELDWORK 10 30 180
RESEARCH CENTRE 30 10 140

COSTS PER WEEK (E) | 500 300 |

5. A laboratory technician in a medical research centre is asked to formulate a diet from two
commercially packaged foods, food A and food B, for a group of animals. Each kg of food A
contains 8 units of fat, 16 units of carbohydrates, and 2 units of protein. Each Kg of food B
contains 4 units of fat, 32 units of carbohydrate and 8 units of protein. The minimum daily
requirements are 176 units of fat, 1024 units of carbohydrate, and 384 units of protein. If
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food A costs 5c per Kg and food B costs 5¢ per Kg, how many kilograms of each food should
be used to meet the minimum daily requirements at the least cost? What is the cost of this
amount?

. A can of cat food, guaranteed by the manufacturer to contain at least 10 units of prbtein, 20

units of mineral matter, and 6 units of fat, consists of a mixture of four different ingredients.
Ingredient A contains 10 units of protein, 2 units of mineral matter, and ; unit of fat per
100g. Ingredient B contains 1 unit of protein, 40 units of mineral matter, and 3 units of fat
per 100g. Ingredient C contains 1 unit of protein, 1 unit of mineral matter, and 6 units of fat
per 130g. Ingredient D contains 5 units of protein, 10 units of mineral matter, and 3 units
of fat per 100g. The cost of each ingredient is 3¢, 2¢, ¢, and 4¢ per 100g, respectively. How
m- ny gremmes £ each should be used to minimise the cost of the cat food, while still meeting
the guaranteed composition?



Simplex Method

7 | Simplex Method

Chapter Includes:

Introduction

Standard Form

The Simplex Procedure

The Optimal Solution

Special Cases in the Simplex Procedure

The Minimisation Problem : Dual Problem
Transportation Model

The Simplex Method and Transportation Problers

e B N e

7.1 Introduction

The Simeplex method is based on an understanding of the algebra of the linear programming problem
being solved. We begin by stating a general maximising linear programming problem involving n
unknown (or decision ) variables and m constraints as

Self-Instructional Material
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Maximise: Z2=C1T) F %o+ ...+ Culn
Subject to:  anzi+e1Z2+... +o1Ta < h

02171 + @oeTo+ ...+ GpnZy < by W
. 1

G121+ 0maZs F ... F GonZn < b
31,32,---,27120

or equivalently

mex z = ic‘,‘l“'

i=1
subj. el Z ATy < bk (2)
i=1
k= 1,2,..m
z 2 01‘.3112)"':“ (3)

We note in particular that all the constraints involve the < sign. We will use this type of maximising
linear programming problem to introduce the Simplex method. Other types of inequalities as well
a8 the minimising problem will be discussed later. The number m, of cobstraints, can be less, equal
or even greater than n.

The Simplex method is similar to the graphical method in that it uses the extreme points of the
feasible region to search for the solution. The main difference is that with the Simplex method, once
the injtial vertex has been chosen, movement from one vertex to another is in such a way that the
value of the objective function improves with each move. Although there are n + m variables in m
equations, the solution of the problem concerns the n variables in the original constraints. fm < n
then some of the decision variables will have zero values.

Before we can employ the Simplex method we need to rewrite the problem in a standard form in
which the constraints are equations rather than inequalities.

1 7.2 Standard Form

We consider the k-th constraint of the general linear programming problem (1)
Og1 21+ 0pa%2 + oo F GnZn S b 4)

We convert the k-th inequality constraint to an equality constraint by introducing a new variable,
Zysk 2 0, called a slack variable. The name of the variable derives from the fact that if the left
hand side of the constraint is to balance with the right hand side of the constraint, then something
has to be added to the left side.
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If we do this for each of the m constraints we can write the standard form of the system (4) as

Meaximise .'=:=2?=1 CiT;

Subject to: 2:;1 Opi%i + Trpk = b
k=12,...,m
i 20,304 20, i=12...,n

(5)

We can write the standard form of the linear programming problem as a set of matrix equations

z = Cx
Ax = b (6)
where
a1y 412 .. Gin 1 0 . 0
ey agn ... @, 0 1 . 0
A= )
Gml Gmz ... OGma 0 0 ... 1
and .
[ o ] -
Ca ! -‘
)
: : by
: ba
C= c(;, , o x=| =z, , b= . (8)
0 En.“'l b;n
(.) J L I1'1.-[—1'1'1 J

We note the following about the standard linear programming problem:

1. The objective function is unchanged. The slack varisbles can be included in the objective
function with zero coefficients.

2. The m constraints of the new system are represented by m equations and there are now n+m
~ unknown variables (the solution variables plus the slack variables);

3. All the variables including the slack variables are nonnegative;

4. The right side values are nonnegative.

Definition 7.1 : A set of variables z;, together which satisfy the equality constraints Az = b are
said to be basic variables. These basic variables form a basic solution or a basis. If all the basic
variables are nonnegative then they form a basic feasible solution. We note that a basic feasible
solution may not necessarily optimise the objective function. “

" In relation to the graphical approach we point out that every basic feasible solution is an extreme
point of the feasible region, and conversely, every extreme point is a basic feasible solution.

As we discuss the Simplex procedure we will use our prototype example of the paint mix problem
presented by the linear programme (2), whose solution has been previously found using the graphical
method.
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The linear programming problem (2) is restated below with & slight change in the names of the
decision variables (7, instead of § and z instead of T') as

Maximise: P=z;+1.529
Subject to: 2z, +4x9 <12
31 +2z2 <10 ©)
] 2 0 1 X2 2 0
Example 7.1 :
Writing the linear programme (11) in standard form we obtain
Meaximse: P=z;+ 1.5z,
Subject to: 22y +4x + 1y =12 (10)
3Ty 4+ 220+ 224=10
7120,2;20

where 13 and z4 are the slack varinbles.

Ounce we have written a linear programming in standard we are ready to solve it using the Simplex
method.

7.3 The Simplex Procedure
The Simplex procedure involves the following steps:

Step 1: Find the initial basic feasible solution

The simplest choice of an initial feasible basic is to assume that none of the decision vanables are
basic. Hence we initially assume that the basic solution consists only of the slack variables.

ie Setz; =0,i=12,.. .,na0d .+ # 0,k = 1,2,...,m. This choice of the initial solution
means that we initielly assume that objective funciional value is zero. In terms of the graphical
method we start at the origin so as to move along the best possible route to the optimal solution.

Example 7.2 : If in the constraints of the standard form (12) we set 21 =0, 24 = 0 we have the
initial basic feasible solution z3 = 12, 2, = 10, and P = 0.

Step 2: Set up the initial Simplex tableau

In this step we arrange the various matrices and vectors involved in the matrix form of the hnear
programming problem in the simplex tableau. This tableau contains all the information about the
current basic variables and their corresponding values, the optimality status of the solution. The
metbod then continues to use the principle of the Gauss-Jordan procedure to compute toe next
improved solution.

A typical initial simplex tableau has the form shown in Table 1
In tae tableau.

1. The top row shows both the n + m decision and slack variables ,,22,...,Z541,.- -, Tnm 88
labels for the corresponding columns;

2. The coefficients of the constraints are shown in the middle rows;

3. The last row is the z-equation, showing the objective coefficients;



Basic| 21 22 ... Zn ZTn4l Ttz oo Indm

Tnyl (1 G110 G212 .. Bin 1 0 A 0 b

Tnt2 | G Q22 ... @2 O 1 0 by
. : 0 . :

Tpim | Oml Om2 - Gmn 0 o ... 1 ben
z - - ... —¢, 0 0 0 0

Table 1: The general simplex tableau.

4. The extreme left column shows the basic variables;
5. Each basic variable
e appears in exactly one equation in which it has a coefficient 1. The columuy it labels has
all zeros except in the row in which it is shown as a basic variable

e has a value shown on the extreme right column.

Initially the negative coefficients in the z-equation are & result of writing the objective eguation as
Z—CT ~ 0Tz —...— CpZn =10 f11)

80 that z itself is treated like a variable. When the decision variables are initially set to zero, the
initial value of z is also zero. The value of z will vary as the decision variables assume nonzero
values. In particular for the maximising problem 2z will increase as any of the nonbasic variables
with a negative entry in the 2-row is increased.

Example 7.3 :
The tnitial Stmplex tableau of our example is

Tableau 1:

Basic | 3, T9 X3 T4 | RHS
3 ) t ool
T4 3 2 ¢ Iy 10
P -1 15 ¢ ¢

The initial basic variables are £3 = 12 and 14 = 10 which you can read from the estreme left and
right columns of the tableau.

Step 3: Test for optimality

At any stage of the procedure you can check whether the current basic solution iz optimal. This
information is contained in the objective row of the tablean. If ali the entries in the ohjective row are
nonnegative, then the current basic solution is optimal. In particular all the columus associated
with the basic solution will have zero coefficients in the objective tow while the columns associated
with the nonbasic variables will have positive coeflicients.

For our example, in the last row of Tableau ! we have the negative coefficients ~1 and ~1.5 corre-
sponding to x; and 13. Thus the present solution is not optimal.
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Step 4: Choose the variable to enter/leave the basic set

First you decide which of the nonbasic variables will bring about the best improvement on the
objective value if entered into the basic set. i.e, if it is increased from zero. The nonbasic variables
corresponding to the negative coefficients in the objective row are candidates for entry into the basic
set. The entering variable is the one associated with the colun with the most negative coefficient
in the z-row. This column i8 kunown as the pivot column.

Jince this variable will become basic, one of the basic variables will have to become nonbasic (or
will leave the basic set} and be reduced to zero. The leaving variable determined by the quotients
of the right hand column and the pivot column. You first compute quotients of the right hand side
and positive coefficients of the pivot column. Thus you compare only positive quotients. Once you
have computed all positive quotients, you choose the row which has the least quotient, This is called
the pivot row. The leaving variable is the one which corresponds to the pivot row on the left band
side of the tableau (among the basic variables).

The element at the intersection of the pivot row and pivot column js called the pivot coefficient.
1t is normally highlighted by circling it (we will highlight it by boldface type}. It is necessary to
identify this element in order to move on to the next step.

In our ezample the variables z, and 29 are the cendidates for entry into the basis. The most negative
coefficient in the last row is —~1.5 in the column labeled 3. This is the pivot column and thus the
entering variable 15 z3. This variable is raised from zero a nonzero value which will be determined
in the next step.

Now we need to decide which variable should leave the basis. If we divide the coefficients of the last
column by corresponding coefficients in the zo-column we obtain the quotients %} =3 and -;9 = 5.
The smallest quotient is &, corresponding to x3 in the extreme left column. Thus the T3-row is the
pruot row, the variable z3 has to leave the basis as zo enters, and assumes the value 3. The pivot
coefficient i3 4. (in boz)

We are now ready to proceed to the next step.

Step 5. Update the Simplex tableau

The next step is to update the tableau by reducing it using the Gauss reduction principle. By
updating the tableau you are esseatially determining the effect of the introduction of the new basic
variable and discarding the one that has left the basis.

By Gauss reduction, you reduce the pivot coefficient to one and all other coefficients in that columu
to zero. Let us illustrate this using our example once again.

In updating the tableau we first divide the z3-row by { to reduce the pivot coeffictent to 1. The
coefficients 2 and —1.5 in the pivoi column should be reduced to 0 by either adding or subtracting a
sustable multiple of the pivot row. i.e. Ry becomes Ry — 2Ry, R3 becomes R3 + 1.5R,. Performing
these Gaussian operations leads to the tableau

Tableau 2
I T2 T3 T4
I2 ! 1 ‘—li g3
T4 q@ g - —é 1 4
P -3 ] % 0] 4.5

Thus the objective functional value has improved from 0 to 4.5 as xq 8 raised from zero to 3. Note



that 4.5 = 1.5 x 3, the contribution made by x4 in the objective. Step 6. Repeat Steps 3 - 5
Test for optimality and pivot again until the optimal solution i obtained or some other conclusion
is made of the problem.

Once ogasn we test whether the current solution is optimal. Looking at the last row of the Tableau £
above we see that there i3 still a negative coefficient, so the solution is not optimal. We repeat the last
three steps of the Simpler procedure. Since —; in the objective row is the only negative coefficient, the
corresponding column is the pivot column and , enters the basis. The leaving varichle i3 obtained
by comparing the quotients ; =6 gnd —;— = 2. Hence x4 should leave the basis and give way to z;.
The pivot coefficient is 2, of the intersection of the pivet row and pivet column.

Updating the tableau by Gauss reduction leads to the iableau

Tal_)leau 3

H

[ s |
b3
b
]
<
1]
F

I3

I

P

Sl 2y
— |
] G PRI
A T e o
b

Since there are no more negative coefficients in the objective row of Tableau § we conclude that the
current solutton is aptimal.

7.4 The Optimal Solution

Once the optimality test is met (i.e. all coefficients in the objective row are nonregative), we can
extract the solution from the final tableau. The optimal solution consists of the basic decision
variables appearing in the extreme left column. The corresponding values appear in the extreme
right column. Any decision variable which is not in the basic set has a zero value.

Referring this to our particular ezample, the extreme columns of the final tableau give the solution
=2 z,=2 P=5

which agrees with what we obtained earlier using the graphical approach.

We note what was mentioned earlier about the coefficients of the basic variables in the last row and
the existence of a unit matrix in the tablean.

If we relate this procedure to the geometrical solution we observe the following movements: From
the origin the search for the solution moved to the vertex {0,2) then to (2,2).

We will now solve the following linear programming problem to illustrate the implementation of the
complete Simplex algorithr.

Example 7.4 :
Consider the following Bnear programming problem in standard form

Mezimise 2z =120z + 100z,

Subj. to 251+ 222 +23=8
52+ 320+ x4 =15
T1, L3, T3, 24 2 0

Sr'm,r.-lc'r ‘n(! o d
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The initial tableau is shown in Tableau 1. The initial basic feastble solution is obiained by seiting
Ty = T2 =0, 80 that z3 = B and 14 = 15.

Tableau 1
51 I I3 Ta
I3 2 2 1 0 B
24 3 0 115
z |-120 -100 O O | O

The tnitial solution i3 not optimal since there are negative coefficients in the z-row.

The entering variable is x| corresponding to the most negative coefficient, —120.

The required quotients to determine the leaving variable are § = 4, and 13 = 3 of which 3 is smaller.
Hence x4 is the leaving variable. The pivot element i3 therefore 5.

In pivoting, T, now replaces 74 in the extreme left column. The new z,-row entries are ohtained by
dividing by 5. The variable 3 remains in the basic solution but the coefficients in the corresponding
row are obtained by carrying out a row operations on x3-row and z-row so that the xy-column entries
are zero except for the pivot coefficient.
The new tableau is shown in Tableau 2.

Tableau 2

23 | 0 m 1 %2
n 1 % o0 1|3
2] 0 —28 0 24]360

The new basic feasible solution, x; = 3, 22 = 0, 13 not optimal. Hence we continue pivotiﬁg. The
next variable to enter the basis is 2. The leaving variable is 23 (quotients are 5/2 and 5) Pivoting
on g leads o the new tableau shown in Tableeu 5.

Tableau 3
I Ta I3 T4
m| 0 1 3 1%
AR IR
z | 0 0 35 10430

Since all the entries in the z-row of the last tableaw, Tableau 3 are positive, we deduce that optimality
has been reached.

The solution is obteined from reoding the first end lost columns of the tableau. On the first column,
the basic variables are 71 and 5. The corresponding volues in the last column are 5 and §. The
mazimum value of z is 430, corresponding to z in the lost column.

Hence the optimal solution is
, =430

[ =3 L

1_21 2=



Example 7.5 :
Maximize P =70z, + 5022 + 3523
subject to  4dzy + 3z2+ 23 < 249
2+ +123 <100
- —4r; +22, <0
7320, 2220, 7320
Solution:

We add the slack varigbles 74, =5 and zg to convert the problem to standard form.

Maximize P =70z, + 5012 + 35z3
subject to  4xy + 3x2 + 13+ 14 = 240
2z, 4+ r3+ 23+ 5 = 100
—Az) + 1o+ 25 =0
I1, I3, T3, T4, T, T > 0

The initial Tableau i3 shoum below

Tableau 1
Basic I o] Tz T4 T35 Tg RHES
Z4 4 3 11 0 0] 240
zs {8t 1 1 0 1 0100
g | -4 1 O 0 0 110
P |- -5 -3 0 0 0] O

The initial basic feasible solution is obtained by setting 1 = 2o = z3 = 0 so that x4 = 240,
x5 = 100 end x5 = 0. This solution is not optimal since there are negative coefficients in the last
row containeng P. The entering variable is z; corresponding to the most negative coefficient, -70.
The quotients are 12 = 50 and 4 = 60 of which 50 is the smallest (note that we don't consider
the quotient 30-; =0). Thus xs is the leaving varisble and the pivot element 1s 2,

Dividing row 2 by 2 gives

Basic| zy ®3 3 x4 w3 z¢ RHS
Ri: 2 | 4 3 1 1 0 0]20
Rz: 1 i % % 0 % 0 50
Ry: =z | -4 1 0 0 0 1] 0
Re: P |70 -50 =35 0 0 0] 0

To obtain Tableau 2 we perform the following row operotions

—4Ry+ Ry, 4R+ Ry, TO0R;+ Ry

This gives

Tableaw 2
Basic|z1 z3 73 %4 x5 x5, RHS
74 |0 -1 1 -2 0 40
5 |1 % % 0 % 0] 50
g |0 3 2 0 2 1200
P {0 =15 0 0 35 03500

Simplex Method
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Since -15 s the only negative coefficient in the P-row, it follows that the entering variable is z,.
The quotients required to determine the leaving variable are 2 = 662, —5%9 =100, 9 =40 of which
40 is the smallest. Thus x4 is the leaving variable and I is the pivot coefficient.

To obtain Tableau 4 we perform the following row operations

1
——R) + Ry,

5 -3R;+Rs, 15R;+ Ry
This gives
Tableau 3
Bosic | xy x 23 x4 Is %Zg| RHS
z2 |0 1 -1 1 -2 0| 40
z J1 0 1 -3 % 0 30
zg |0 0 [5] -3 8 180
P |0 0 -15 15 5 O |4100

Looking at the coefficient of the P-row in Tableau § we note that the only negative coefficient is - 15.
Thus, =3 i3 the entering variable. The quotients are % = 16, -31—0 = 30. Thus, zg is the leaving
variable end § is the pivot coefficient.

Dividing row 3 by § gives

Basiclzy z2 I3 T¢ x5 zg | RHS
2 |0 1 -1 1 =2 0| 40
2z (1 0 1 -1 3 0o/ 30
z3 [0 0 1 -2 & 1|16
P |0 0 -15 15 5 0 |4100
To obtain Tableau 4 we perform the following row operations
Ry+ Ry, —~Rs+Rs, 15R3+ R,
Tableau 4
Basic |z, 32 =3 x4 Iz 5| RHS
z2 |0 1 0 % -2 {56
|10 0 35 -4 3| M4
3 (0 0 1 -2 & 1116
P 10 0 0 6 39 3)4340

Since all the entries in the P-row of Tableau | are positive, we deduce that the optimal solution has

been reached. The solution i3

7y =14, 7,=56, z3=16

7.5 Special Cases in the Simplex Procedure

and mezimum P = 4340

Certain situations may arise which do not comply to the assumptions so far made in tmplementing
the Simplex procedure. Some of these situations and how they are handled are discussed below.



It may happen that during pivoting there is a tie in the entering and leaving variables; i.e. the most
negative coefficient of the z-equation appears under more than one variable; or the smallest quotient
corresponds to more thar one variable. Normally the tie is broken (called tie breaking) by making
an arbitrarily selection of the entering or leaving variables among those that qualify.

7.5.2 Unbounded Solution

Uanboundedness describes linear programs that do not have finite solutions.Under very rare occasions
in the Simplex method it may turn out that every coefficient in the pivot column is either zero or
negative (called the unbounded solution situation). Hence there would be no way of computing a
leaving variable. In this case, it may be necessary to check if there has been no computational errors
or else z would be unbounded.

7.6 The Minimisation Problem : Dual Problem

We have so far discussed the Simplex method as applied to solving a maximizing linear programming
problem. One way to solve a minimisation problem is to solve an equivalent maximising problem
called the dual problem. The theory of duality simply states that every linear programming
problem can be written in two forms: the primal form and the dual form. The original problem is
called the primal problem. The objective of a dual problem is opposite that of the given primal
problem. Thus a primal minimisation problem has a dual maximisation problem. The same holds for
a maximisation problem. That is, & primal maximisation problem has a dual minimisation problem.

Sometimes it is easier to solve the dual problem than it is to solve the primal problem. The
relationship between the two types of probleras is given in the following statement.

There is an important result called the Von Neumann duality principle which relates the optimal value
of the dual problem to that of the primal problem. The statement of the result is that the optimal
solution of a primal linear programming problem, if it exists, has the same value at the
optimal solution of the dual problem. Thus the optimal value determined for the dual problem
is the same optimal value for the primal problem.

7.6.1 Solving a Minimization Problem
A minimization problem is in standard form if the objective function
Z=QT) 02y + ..+ Ty,

is to be minimized subject to the constraints.

QT + 61Ty +.. .+ 81aZn 2> b
an T +aTa+ ...+ Ay, > by
Q1 Z1 + Gm2T2 + -+ 0mnPn > b

where z; > 0 and b; > 0. To solve this problem we use the following steps.

Simplex Method
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1. Form the augmented matrix for the given system of inequalities, and add a bottom row
consisting of the coefficients of the objective function.

|— a1y @12 - Gin : b
aa1 G on ba
Gmi Gm2 ' Omn ' bm
| a e - e 1]
2. Form the transpose of this matrix.
Gy1 Gg21 - Oml f (51
a1z Q3 - Gma | €
Gln G2n ' Gmn © Cn
B R S I

3. Form the dual maximization problem corresponding to this standazd matrix. Thas is, find the
maximum of the objective function given by

w=hy+hyat.. +bhnyn

subject to the constraints.

aupr+oeuye+... HemYn <
apy +amyy+ .o+ mam < C2
a1 taz¥z+ ... tomalm < O

wherey; 2 0,92 2 0,...and ym > 0 and gy 2> 0

4. Apply the Simpiex Method to the dual maximization problem. The maximizatica value of
w will be the minimum value of z. Moreover, the values of x4, zg, .. . and z, will 2ccur in the
bottom row of the final simplex tableau, in the columns corresponding to the slack variables.

We will illustrate the concept of duality by way of a minimization linear programming problem.

7.6.2 Constructing the Dual Problem

Example 7.6 :
Consider the minimization problem
Minimize : C=16z, +4bzy
Subject to : 2z, + 5z9 > 50 12)
1+ 320 2 27
z1,222 0



The following steps are invélved in constructing the dual problem from a given primal problem.

1. Construct a special augmented matrix from the constraints coefficients of the primal problem
without introducing slack/surplus variables and append the objective coefficients.

2z, + 539 2 50 2 5 50
7y 4339 > 27 A= 1 3 | 27
1621 + 451‘:2 = 16 45 1

2. Obtain the transpose of the augmented matrix

2 1 | 16
AT=| 5 3 | 45
50 27 | 1

3. Write out the dual problem from the transpose matrix. This new problem will always be a
maximization problem with < problem constraints. To avoid confusion, we shall use different
variables in this new problem:

2 1 16 n+ye <16
5 3 | & By1 + 3y < 45
50 27 | 1 50y + 27ya = P

The dual of the minimization problem is the following maximization problem:

Maximize P = 50y; + 27y,
Subject to 2+ <16
S 433y £45
20 3220

4. Solve the dual problem in the usual way.

Note the following changes when constructing the dual problem, in addition to the change of notation:

1. The objective becomes the opposite of that of the primal problem.
2. < signe become > and vice versa.

3. There are as many decision variables in the dusl problem as there are constraints in the primal
problem.

4. There are as many constraints in the dual problem as there are decision variables in the primal
problem.

5. The objective coefficients of primal problem become the right side (resource) values of the dual
problem.

6. The right side (resource} values of the primal problem become the objective coefficients of the
dual problem. »

St i
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Example 7.7 :
Form the dual problem of

Minimize C =40z, + 12z, + 40z
Subject to 22y +xg+hxy > 20
dr; +x9 + 23 2> 30

,32,I3 2 0
Step 1. Form the mairiz A
2 1 5 1 2
A= 4 1 1 | 30
0 12 4| 1
Step 2. Find the transpose of A, AT.
2 4 | 40
1 1 12
T _
A= 5 1|40
20 30| 1

Step 3. State the dual problem.
Mazimize P =20y + 3032
Subject to 2y +4ye <40
ity <12
Sh+1 <40
#, =0

In the next example we solve a minimization problem by solving its dual.

Example 7.8 :
Find the minimum value of

C=232 421 Objective function
subject to the constraints

221 + 9

Constraints
Ty + Iz

VIV
L=
e e

where >0 andzp > 0.
Saolution:

The augmented matriz corresponding to this minimization problem is

(2 1 1§
1 1 4
L3 2 1]




Thus, the matriz corresponding to the duol mazimization problem is given by the following transpose.

2 1 3
1 1 2
| 6 4 1

This implies that the dual maximization problem is as follows.
Dual mazimization problem: Find the mazimum velue of

P =6y + 4y

Subject to the constraints
21

+
n T omw

IA A
b
[

where gy > 0 and i > 0.
After writing the dual problem in standard form we obtain the initial tablean
Tableau 1

We see from the tableay that the pivot column is the yi-column. The quotients are 3 end 3 = 1.

Hence the y3-row is the pivot row. Thus y; is the entering varieble which replaces y3, the leaving
variable. The pivot element at the intersection of the pivot row and pivot column is 2. To update
the tableau we

Performing the Gauss reductions we obtain Tableau 2 given below.

Tableau 2
Basic\yn w2 13
I~ "1 "4[3
n 1 ; 3 0 g
|0 -3 1|3
P 0 -1 s 019

We deduce that the current solution is not optimal. (Why?) Updeting once more we obtain Tableau
3 given below

Tableau 3

Basic |1 w2 Y3 @
1 g 1 -111
g 1 -1 2

The current solution is optimal since all the coefficients in the last row are nonnegative.

Simplex Method
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7.6.3 Reading the Solution of the Primal Problem

We are now going to extract the solution of the primal problem from the final simoplex tableau of
the dual problem. The optimal objective value is

P=C=10

Since the above final tableau is for the dual problem, we recall that in transposing the primal problem
the abjective coefficients of the original variables became the right-hand values of the constraints.
This means that each original variable now corresponds to a slack variable. Thus we do not read
the solutior in the same way as for the primal simplex tableau.The optimal values of the original
variables correspond to the slack variables in the final tableau of the dual problem.

For ~u- particular exrrople, the decision variables 7 and z2 of the primal problem correspond to

the stack variables of the dual problem and their values are the corresponding coefficients in the last
row »f the final simplex tableau. Thus the solution is contained in the y3 and y4 columns and is

X = 2, T3 =2
and ihe objective value is in the usual column i.e

y1=11 y2=1

Note that if we substitute the basic variables of the dual problem in the dual objective function we
have
P =6y + 4ya = (6)(1) + (4)(1) = 10.

We get the same objective value if we substitute £; =2, z3 = 2 into the primal objective function
C=3x1+2z2=3)(2)+(2)(2) =10
This verified the Von Neumann Optimality Principle.

7.7 Transportation Model

Tronsportation models deal with the determination of a minimum-cost plan for transporting a com-
modity from 2 number of sources to & number of destinations. To be more specific, let there be
m sourzes {or origins) that produce the commodity and n destinations (or sinks) that demand the
commodity. At the 7 ‘h source, i = 1,2, - ,m, there are s; units of the commpdity available The
dernand at the j-th destination, § = 1,2,-.n, is denoted by d;. The cost. of transporting one unit
of the commodity from the é-th source to the j-th destination is ¢;;. Let 745, 1 €1 <m,1<j<n,
be toe nuinbers of the commodity that are being transported from the i-th source to the j-th des-
tination. Qur problem is to determine those z;; that will minimize the overall transportation cost.
Au optimal solution z;; to the problem is called a transportation pisn.

81 dl
82 : ¥ da

Source S d; Destination
3m dy



We note that at the é-th source, we have the i-th source equation Simplex Method
by
Y zy=s, 1<i<m,
i=1
while at the j-th destination, we have the j-th destination equation
m
Y my=d;, 1<j<m
i=1

Notice that if the total demand equals the total supply, then we have the following balanced trans-
portation equation:
™m n " nom n
IIEEDIIEDWIED I
=] =1 j3=1 j=1 i=1 =1
and the model ig said to be belanced
In the case of an unbalanced model, i.e. the total demand is not equal to the total supply,

we can always add dummy source or dummy destination to complement the difference. In the
following, we only consider balanced transportation models. They can be written as the following

linear programming problem:

m n
min m=) ) cgay

i=1j=1

g
ZI;J\':S{ lﬁiﬂm,
i=1

m
Ymy=d; 1<i<n,
i=1

(%3 2 0 liscml<j<n,

subject to < (13)

i=1
Notice that there are mn variables but only m + n equations. To initiate the simplex method,
we have tc s.dd m+n more artificial variables and solving the problem by the simplex method sesms
to be a very tedious task even for moderate values of m and n. However, the transportation models
possess e~ro important properties that make the calculation easier to be har dled.

m T
where Zsi = Zdj.
1=1

Jsiug the vector notations
— T
X= [2:11,2-'12,37[3,'” 1210, 221,07 5y T2yt v T,y !zmﬂ] )
. T
c= (611161216131"' yC1ny €21, 4 C2ny - 4Gty yc‘mn] )

T
b= [’sl)sih' v rsmvdhdza'" :dn] ’

the transportation model can be stated as the following linear programming problem:
T

min To=cCX

bject to { % > (14)
subjec

) x>0

where the technology matrix A of the mode! is of the form:
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11 1 01
11 .. 1
11 - 1
A= . (15)

11 .. 1

1 1 1 1

1 1 1 1
10 ] 1 1 1

Hence if we denote a;; the [( — 1}n + j]-th column of the matrix A, then

ag=eiteny; i=12:,m j=L2-,n (16)

Here as usual, e; denotes the é-th unit vector. Next we are going to prove some algebraic properties
of the matrix A.

Theorem 7.1. The rank of the matriz A is equal tom +n - 1.

Proof. We first claim that rank(A) < m +n — 1. Let s; be the i-th row of A (source rows) and d;
be the (m + j)-th row of A (destination rows), Then it is clear from (6.3) that

m 1)
Y si-) d;=0.
=t j=I
Hence the rows s; and d; are linearly dependent. Thus rank(4) < m +n.

Next we prove that rank(A) > m + n — 1 by constructing a nonsingular (m +n — 1)-by-
(m+n-1) submatrix of A. Suppose we take the n-th, the 2n-th, the 3n-th, - - -, the mn-th columns
of A together with the 1-st, the the 2-nd, the 3-¢d, - - -, the (n — 1)-th eolumns of A. This resulting
matrix is of order (m + n) by (m+ n — 1). If we delete the last row of the matrix, then we obtain
the following (m + n — 1)-by-(m + n — 1) matrix:

0 011 - 1
1
1
. D= !
0 1
L 1]

Since D is & triangular matrix, det D = 1. Therefore D is non-singular and rank(A) > rank(D) =
m +n— 1. Thus we conclude that rank(A) = m +n — 1, which is equivalent to saying that one of
the equations in (7.1)is redundant. :

Thus a basic solution to (7.1) has at most m +n — 1 nonzero entries.

Theorem 7.2, Every minor of A can only have one of the values 1, —1 or 0. More precisely, given
any Ay, a k-by-k submatriz of A, we have det Ag = £1 or 0.

Proof. Notice first that every column of A has exactly two s, thus any column of A; has either
two 1's, only one 1 or exactly no 1. If A contains a column that bas no 1, then clearly det Ay =0
and we are done. Thus we may assume that every column of Ay contains at least one 1. There are
two cases to be considered. The first case is where every column of Ay contains two 1’s. Then ome



of the 1's must come from the source rows and the other one must come from the destination rows.
Hence subtracting the sum of all source rows from the sum of all destination rows in 4; will give us
the zero vector., Thus the row vectors of Ay are linearly dependent. Hence det A = 0. It remains
to consider the case where at least one column of Ay contains exactly one 1. By expanding A; with
respect to this column, we have

det Ax = tdet A,

where the sign depends on the indices of that particular 1. Now the theorem is proved by repeating
the argument to Ag_;.
Definition 7.2 : A matrix A is said to be totally unimodular if every minor of A is either 1, -1 or
0.

Thus the coefficient matrix of & transportation probiem is totally unimodular.

7.8 The Simplex Method and Transportation Problems

Let us first prove that transportation models always have optimal solution. In fact, given problem
(13), if we put
S"dj \ .
T = 1<i<m,1<j<n,

m n
= ZS.‘ = Zdj,
j=1

=1

where

then it is eagy to check that it is & solution to Ax = b. Hence transportation problems always have a
feasible solution. Since all z;; and c;; are nonnegative, o > 0. In particular, the objective function is
bounded from below. Hence it follows that a transportation problem must have an optimal solution.

Let us see what happens if (13) is solved by simplex method. Since rank4 =m+n-1,2a
basic optimal solution to (13) have ouly m +n — 1 bagic variables, i.e. no more than m+n —1 of
the z;; in the solution are different from zero. To solve (13) by simplex method, we first change it
into standard form by adding m + n artificial variables to (14} . Then we have

min zo=c¢ x+M1Tx,

. [ AJJ [x} =b,
subject to Xq

x, % 2 0.

(17)

Here x, is the artificial variable. Since basic feasible solufion exists, the ariificial variables for the
problem can always be driven to zero in phase I {or else the problem has no optimal solution, a
contradiction}. Since (14) and (17) have the same optimal solution, basic optimal solution to (17)
can have no more than m +n — 1 non-zero variables, i.e. a basic optimal solution to {17) must have
at least one artificial variable in the basis at zero level. (Recall that artificial variables at zero level
in Phase II indicate redundancy).

Suppose that we.have found by ‘some means & basic feasible solution to (17) which is also a
feasible solution to(14) , {i.e. we are in phase II). Let B be the basic matrix (of order m +n) of
[A, 1}, ther B contains m + n — 1 columns of A and one artificial vector q with the corresponding
artificial variable at zero level. Therefore we may consider the m+n—1 linearly independent column
vectors of A in B as a set of basis vectors for (14) . The collection of these m +n — 1 vectors will
be denoted by aZ; and the corresponding basic variables will be denoted by Z5- More precisely, if
B = {(aZ,, q| is basic matrix for (17) , we then define B = [aZ,] as a basic matrix for (14).

We observe that any column vector a;; of A'is just a linear combination of vectors of B, i.e.

Simplex Method
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8 = Ey(aﬂ)(-'j)afﬂ
ef

where ) means summation over all vectors in the basis. We recall that (18) is just the change of
af
basig equation (2.24):

a;; = Byj;, (19)
where B is (m + n)-by-(m +n — 1) and contains the columns afa. Thus in the language of simplex

method, Y(ag)(i;) are just the entries in the simplex tableau at the current iteration. Now we prove
the two most important properties of transportation models.

Theorem 7.3. The coefficients yap)ij) can only take the values 1,—1 or 0.

Proof. Let R; be the {m +n — 1)-by-(m + n — 1) matrix obtained from B in (19) by deleting the
ith row of B. By (19) , R;y,; is the same as a;; with the ith entry removed. Hence by (16} , we sce
that

Riyij = emo145.
Thus ]
Yi; = R,'_lemH—j = m(&dj R«.‘)P—m—1+j,

where adj R; is the adjoint of R;. Note that R; is obtained by taking (m + n — 1) columns and
(m+n —1) rows of A, hence is a submatrix of A. This also follows from the fact that R; is a
submatrix of B and B is a submatrix of A. Since B is a basic matrix, R; has full rank. Thus, by
Theorem 6.2, we have det R; = £1. Since the entries of adj R; are just minors of R; and hence of
A, their values can only be £1 or 0. Thus we see that y;; = £1 or 0.

Thus (18) becomes

85 = E(:tl)agﬁ!
af

where we have omitted those afﬁ with 9(ag)(i5) = 0 in the summation. We note that the conclusion
of Theorem 7.3. holds for any linear programming problem where its coefficient matrix is totally
unimodular.

Theorem 7.4. (The Stepping Stones Theorem). Let B = {a,5} be a set of (m+n ~1) lnearly
independent columns of A. Then for all column vector a; of A, 1<i<m, 1 <j<n, we have

Aij = Big — Bigiy T Aigiy - Bigiy T+ ("Ukaikj: (20)
where aj;,, 8, ;,,,,8,; arein B forl=1,--- ,k — 1. Moreover, the ezpression (20) is unique.

Proof. Since rank 4 =m +n -1, all column vectors of A can be written as a linearly combinations
of vectors in B. Moreover by Theorem 6.3, we have

8y =) (t)agg= ) sap= I as

af afert ySEL-

where I* are index sets depending on the ai;. By (16) , this becomes
8 +emy; = E € + Z €m+p ~ Z €y~ Z €m+é.
afel+ afert nael- yéel-

From this expression, it is clear that there exists an 1 < i1 < n such that (é4;) € I*. Subtracting
8;;, from both sides, we get



Cnri—emii = 9 Cat 9 €mip~ I €~ I emi,

afel} apel} yéel~ I

where I = I* \ {(i1)}. Now if ¢, = §, we are done. If not, then from the expression, it is clear
that there exists an 1 < 43 < m such that (i9%) € I=. Subtracting a;,;, = e; — ep4i, from both

sides, we get
emij T8, = Z €q + Z Cmt§ — Z €y — Z €m+bs
afel} afelt yiel; vbel;

where I’ = I\ {(izt1)}. Equation (20} now follows by repeating the arguments again until 7 is
empty. Since B is a basis, it is clear that (20) is unique.

In the following, we consider how to iterate from one simplex tableau to the next.

Update of the solution x. .
Let ay; be the entering vector and afu be the leaving vector. Then the solution z;; are updated
according to :
" Y ,
385 =08y - 28,20 it (45) o (ur)

Y(uv){st)
B 21)

kel xuU

Tupy =
Yuv)(et}

This equation is to be compared with the updating rule in simplex method:

N Yis o
$B¢=zB;"3B,-""‘ ,lf'l-ﬁéf'
Yrj
o IB,
g, = —
yrj

But by Theorem 7.3, the pivot element y(,.(s2) Will always be equal to 1 and that the other y(46)(s1y =
+1 or 0. Therefore, we see that (6.9) can be rewritten as

(22)
~B B
Tuy = Tuy

{:%fﬁ = xfﬁ or 5:23 = ffﬂ :tmf,,
The property (6.10) is usually referred to as integer property. It shows that if the starting basic
feasible solution x is an integral vector (i.e. all entries are integer), then at each subsequent iterztion,
the solution x is also an integral vector. In particular, the optimal solution x* is also an integral
vector. :

We remark that the integer property of transportation problems is derived from the fact that
all entries of y;; can either be 1, —1 or 0. Thus by recalling Theorem 6.3, we see that if the coefficient
matrix of a linear programming problem is totally unimodular, then the problem will have the integer
property.

Update of {nbleau entries y,;.
For usual simplex method, the tableau entries y; are updated by the elementary row o -erations:

ﬁﬂizyBiFyﬁ' Hidfr

Yrj
. B,
B, = —~

yrj

‘Simplex Method
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In our notations, we then have

~ Yiuv) (44 .
Y(ap)if) = YaB)(i5) — ;i:;;’—;} if (af) # (uv)

Y(uv)(ig)

Yuo)i) = Herto)

Since the pivot element y(yy)(») is always equal to 1, we have

{ VeB)) = Yom(i) — Ynys) i (@) # (wv)
Y(w)is) = Y(aB)(ij)

Computation of z;; — cij.

Recall that in the simplex method,
25— =CRY; G = ) CB~ G
!;EB
Hence in our notations, we have
26T D Yamitan — G (23)

2ap)EB

Because of the simple algebraic structure of the transportation models, it is not necessary to
use the simplex tableau, which is of size (m +n +1) by (mn+n+n + 1), to hold all necessary

information. In the following, we will construct a different tableau, called the transportation tableay,

that can hold the same pieces of information and yet is easy to be handied. For the transportation
model in (13} , its transportation tableau consists of m by n boxes and is of the form

Supply

cn €12 { [ Cin
l | s

;

]

cn c22

Cmil

B |
Lo

S
alcis

Sm

I

&-L_.F —
]

Zml Zma

Demand d;



In the transportation tableau, nonbasic variables (i.e. those a;; not in the basis) are not written out
explicitly.
Recall that simplex tableau contains the following information:

(i) The current solution in the b column.
(i) The xg row contains the reduced cost coefficients z; — ;.

(i) The transformed columns of A, denoted as usual by y;. They are related to the columns a;
of A by (2.20): y; = B a,.

(iv) The current basic variables.

We will see that the transportation tablean can be ma.mpulated easily to give us these necessary
pieces of information. For one thing, according to our convention on the transportation tableau,
those variables that are not listed in the tableau are nonbasic. Those variables that are listed are
basic and their values are the values of the cwrrent basic feasible solution. Next we show by an
example how to compute the current coefficient matrix y(qg)(:5) and the corresponding reduced cost
coefficient z;; ~ ¢y

Ezample . Let us consider a problem with eight variables z;;, 1 <4 < 2, 1 £ j < 4. We then
have the following 2-by-4 transportation tableau.

In Ii2 ’

L22 T3 I ‘

Since rank A =2+ 4 — 1 = §, there will be five basic variables in any basic feasible solutions of the
problem. According to our convention, 13,213, 232, £23 &nd Zo4 are the current basic variable. Thus
811,812, 829, A3 and By are the basig vectors. The other three vectors are just linearly combinations
of these five vectors. For example,

ap =axp ~ant+an.
Thus g92)(21) = ¥anyay) = 1 a0d Ygpzny = —1. Therefore, according to (23),
—cy=cn—Caztcy—om.

Similarly, we have
813 = &2 — agzg + Agg,

Le. Yunas) = Yy = 1 and yeag)sy = ~1. Therefore,
213 —C13 =012 ~ &2 + €23 ~ 3.
Finally,
a4 = a1y -8y +ay
and hence y(12)14y = Yr24)14) = 1 80d Y29)(14) = —1. Thus we have

214 — C14 = €12 — 2 + €24 ~ Ci4-

We remark that a loop is formed each time. For example, for 2,4, we have the following loop.

Simnlex Meth,
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The loop starts with a nonbasic variable, passes through a sequence of basic variables (stepping
stones) and finally returns to the starting nonbasic variable. This is a consequence of Theorem 7.4.
We note moreover that for each of these nonbasic variable, there exists one and only one such loop.
In fact, by Theorem 74, if there are two such loops, then the nonbasic vector can be expressed in
terms of two different linear combinations of vectors in the basis. This will be a contradiction to the
linear independence of the basic vectors.
EXERCISE :
Solve the following LP problems using the Simplex Method
L maximize P =70z + 50z
subject to 4z + 3z < 240
23:1 + 29 < 100
5,22 2 0
P =4100,2; = 30,23 = 40
2. madmize P=102; + 519
subject to 4x; +z7 < 28
221 +3z, < X4
mm,%22 2 @
P=80,2z, =6,2z9 =4
3. maximize P=T0r; + 5022+ 3523
subject to 4z +3z2+x3 < 240
2+ +23 < 100
Ty, :521 I3 _>. 0
P=4550,z, = 0,22 = 70,23 = 30
4, maximize P=2%;, + o2
subject to 521 +23 < 9
T+ I3 <
r,%2 2 0
P=6,.’B; = 1,‘1‘-_1 =4
5. maximize P=30z; + 40z,
subject to 2z +z2 < 10
ritzy <7
T+ 2z < i2
I1,33 2 0

Nelf Tesoractionagl Material
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o Compound Interest
and Annuities

Chapter includes:
Certain Types of Interest Rates
Basic Concept in finance
Time Value of Money
Future Value Vs. Present Value
Computing Present Value
Computing Future Value _
Value with and without Compounding
Future Value with and without Compounding
Compound Value

. Effective Interest Ratg

. Continuous Compounding

. Annuity

. Regular Annuity Vs. Annuity Due

. Present Value of a growing annuity

. Present Value of Perpetuity

. Future value of a growing annuity

. Debentures
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8.1 Certain Types of Interest Rates

A. Credit Market Instruments

A good first step is to carefully define what we are going to measure. Interest rates apply

to four types of credit market instruments:

Compound Interest and
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Simple loan
» provides the borrower with an amount of funds (the principal).

» borrower then pays back the principal amount and interest in one lump sum at
maturity.

Fixed-payment loan
+ provides the borrower with an amount of principal

+ the principal and interest are repaid with equal monthly payments for a certain
- period

» each monthly payment is a combination of principal and interest
Coupon bond
» purchased at some price

= entitles the owner to fixed interest payments annually (coupon payments) until
maturity and a face value payment (or par value) at maturity

s characterized by the issuer, the maturity, and the coupon rate, which is multiplied
by the face value to determine the coupon payment

» Note: your textbook focuses on annual payments, but in fact, almost all coupon
bonds issued in the United States have semi-annual payments.

Discount bond (also known as a zero coupon bond)

o purchased at some price below its face value (or at a discount)

= entitles the owner to a face value payment at the maturity date.

» There are no interest payments, hence the name "zero coupon bond."
The simple loan and the discount bond both consist of only one cash flow while fixed-
payment and coupon bonds have multiple cash flows life of the instrument. Both the
amount and timing of cash flows are important when comparing financial instruments. To
make an accurate comparison among instruments with differences in the amount and
timing of cash flows we need to understand and calculate present value and yield to
maturity.

B. Present and Future Value

I realize many of you are already familiar with present value from other
accounting/finance courses, but let's review..



Present value is based on the fundamental reality that you are not indifferent between
" getting $100 today versus waiting one year to receive $100. Why? Well in financial
markets, you could receive interest on that $100 over the course of one year, and eod up
with more than $100 at the end of the year. The cost of waiting is the simple interest rate;
i.e. the interest rate on a simple loan. You lend me $100 at an interest rate of 5% per year,
then at the end of one year you will receive $100 + (.05 x $100) = $100 x (1 + .05) =
$105. At the end of 2 years you will receive

$105%(1+,05) = $100%(1 +.05y x (1 +.05) = $100x (1+.05)2 = $110.25

In general, if the simple interest rate is i and the loans are made for n years you will
receive:

$100x (1 +1)*
The amount above is known as the future value of $100 in n years.
So, working backwards, for any amount received in the future we need to discount it to
the present. In other words, if you are getting $100 in one year, how much less would you
accept in order to get it today? The answer is the present value and will depend on the

interest rate.

Suppose again the interest rate is 5%. If you will receive $100 in ope year, what is the
present value? We want to solve the equation

PV x (1 +.05)=8%100 or

- 3190 =$35.24
i+05)

If you will receive $100 in 3 years, what is the present value?

v -0 $35.35l
05)

(+

In general, for the PV of $100, n yéars from now, with a simple interest rate of i, we use
the formula
100
PV = $ —
(1+1)

Note that larger values for n and i imply smaller PV,
C. Yield to Matuority

Now that we understand present value, we have the tools to calculate the most important
measure of interest rates, the yield to maturity. The yield to maturity is the interest rate
that makes the discounted value of the future payments from a debt instrument equal to its
current value (market price) today. Let's look at the yield to maturity for the 4 credit
market instruments discussed above.

Compound Interest and
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Simple Loan

This is the easiest case, because there is only one cash flow at the end of the loan to
discouant.

Example 1: Suppose the loan is for $1500, for 1 year, with a simple interest rate of 6%,

The value of the loan teday is $1500. The future payments on the loan are $1500(1+.06) =
$1590.

So the yield to maturity is the i that solves the equation

$1530

(+1)

$1500 =

Solving fori, (1+i)=1590/1500
i=.066%

For a simple loan, the yield to maturity is the same as the simple interest rate. Why?
Because there is only one cash flow.

Fixed-Payment Loan

This case is more complicated due to the multiple payments through the life of the loan.
Your textbook example uses a loan with annual payments on page 71. However, the most
common forms of this type of loan are for monthly payments, like a mortgage, student
loans or an auto loan. Loans with multiple payments during the year are a bit more
complicated, as shown in the example below:

Example 2: Suppose you take out a $15,000 car loan for 5 years, with monthly payments
of $300.

The value of the loan today is $15,000. The future payments are $300 paymcrs ovsr the
next 60 months

The yield to maturity is the i that solves the following equation:

§300 . $300  $300 _  $300

e Y

Note that since payments are monthly for 5 years, there are a total of 5 x 12 = 60 payment
periods. Also, the yield to maturity, i, is expressed on an annual basis, so i/12 represents
the monthly discount rate. This assumes that interest charges compound annually instead
of monthly. If interest charges compounded monthly, then the appropriate monthly
discount rate is where

$.5,000 =

=1+ )%
or

i, = (1 +i)“12 -


http:1500(1+.06

Your textbook is cavalier with this point, but the distinction is important. In this
application, though, it makes very little numerical difference in the answer.

So how do we solve this for i? Well it is not easy, since there is no way to isolate i in this
equation, It could be done by trial and error (trying values of i until the right-hand side of
the equation is $15,000), but that is too time consuming. This problem is solved with the
aid of a table, financial calculator, or spreadsheet programs that do this automatically. A
financial calculator is not required for this course, so I provide loan or bond table when
needed.

Consider. the following loan table:

Monthly Payments on $15,000 Loan

yield to maturity maturity (years)
5 10 16
6.00% | §28880 | $16653 | $12658
6.50% | $29348 | $17032 | $13067
7.00% $29702 | $174.16 | $134.82
7.50% $30057 | $17805 | $139.05
8.00% _$30415 | $18199 | $143.35

We are looking for a 5 year loan (shaded yellow), and a monthly payment of $300.
Looking at the table above we see that at 7.5% yield to maturity, the payment is $300.57.
So the yield to maturity is slightly under 7.5% (7.42% to be more precise).

Click below for the "high tech" ways to solve this example:

Financial Calculator: TI BA II+ Excel Spreadsheet J

Coupon Bona

With the multiple interest payments invoived, this case is similar to the fixed payment
loan in its ccmplexity. Again, your textbook example uses a coupon bond with arrual
coupon payments on page 72. However, all bonds issued in the United States have coupon
payments semi-annually, or every 6 months, including Treasury notes, Treasury bonds,
and corporate bonds. So the example below also uses 6-month payments.

Example 3: Consider a 2-year Treasury note with 2 face value of $10,000, a coupc-m sate
of 6%, and a price of $9750.

So the yield to maturity will solve the equation:
bond price = PV(future bond payments)

What are the future payments?
There are coupon payments every 6 months, and a face value payment at maturity.

What are the coupon payments?
The coupon payments are [face value x coupon rate]/2 = $10,000 x .06 x .5 = $300. Note
that we divide by 2 because there are 2 coupon payments in a year.

“ompound Interest and

Annuiltes

Self-Instructional Maierial
de7



Buxiness Mathematics

Self-lInsiructional Material
o4

So the payment schedule is
r 4
6 months $300 |
1 year 1$300

118 months 1$300

2 years $10,300

So the yield to maturity will solve the following equation:

o $300 8300 _ $300  $10,300

BIEAEE)

Note that since payrments are every 6 months for 2 years, there are a total of 2 x 2 = 4
payment periods. Also, the yield to maturity, i, is expressed on an annual basis, so if2
represents the 6 month discount rate. This assumes that interest charges compound
annually instead of semiannually. If interest charges compounded semi-annually, then the
appropriate discount rate is where

i =(1+iz)? =1
oY

ig = (1+i)V% -1

Your textbook is cavalier with this point, but the distinction is important. In this
application, though, it makes very little numerical difference in the answer,

Like the fixed payment loan, this problem is solved with the aid of a table, financial
calculator, or spreadsheet programs that do the trial-and-error calculations automatically.
A financial calculator is not required for this course, so I provide loan or bond table when
needed.

Consider the following bond table:

Bond Prices, 6% coupon rate semi-amua! payments
yield to maturity E (years)
5.50% lm $1Q216.00 $19380.68
6.00% $10000.001 $10,000.00] $10,000.00
6.50% $9.789.44 $39,636.52
7.00% $9.584.17 $9.289.38
7.50% $9,384 .04 $8,957.78
8.00% $9.188.91 $8,640.97




We are looking for a 2 year bond (shaded yellow), and a price of $9750. Looking at the Compound Interest and
table above we see that at 7.5% yield to maturity, the price is $9726.15. So the yield to Annuities
maturity is shightly under 7.5% (7.37% to be more precise).

Spreadsheets also have financial functions built in. Here is"how to compute the answer to
example 3 using Excel:

(1) Click on the cell where you want the answer displayed.

(2) In the "Insert" menu, choose "Function.” (or click the fuaction icon in your toolbar,

UxD)

(3} Choose the "financial" function category, and choose "RATE" and a box pops up.
(4) Now fill in the spaces in the box: Nper = 4, Pmt = 300, Pv = -9750, Fv = 10000,
and ignore type

(5) The formula result displays at the bottom of the box, "Formula result =
3.683596826%." This is i/2, so multiply by 2 to get the annual yield to maturity of
7.37%

Looking at the bond table above, there are 3 important points to be made about the
relationship between bond prices, maturity, and the yield to maturity:

« The yield to maturity equals the coupon rate ONLY when the bond price equals
the face value of the bond.

e When the bond price is less than the face value (the bond sells at a discount), the
yield to maturity is greater than the coupon rate. When the bond price is greater
than the face value (the bond sells at a premium), the yield to maturity is less than
the coupon rate.

+ The yield to maturity is inversely related to the bond price. Bond prices and
market interest rates move in opposite directions. Why? As interest rates rise,
new bonds will pay higher coupon rates than existing bonds. The prices of existing
bonds fall in the secondary market, so the yield to maturity rises. This negative
relationship between interest rate and value is true for all debt securities, not just
coupon bonds.

Discount (Zero conpon) Bond

Because discount bonds have only one payment at maturity, it yield to maturity is easy to
calculate and is similar to that of a simple loan. Most discount bonds have a maturity of
LESS than one year, so the example below looks at such a case:

Example 4: Consider a Treasury bill with 90 days to maturity, a price of $9873, and a
face value of $10,000.

The current value is $9850, and the only future payment is $10,000 at maturity. However,
we do pot wait a year for this payment but only 90 days so we need to adjust the
discounting for this.

The yield to maturity solves the following eguation:
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Solving for i,

| 50 $10,000
1+1 =
[ .[365]] $9850

[ 90)_ 810000
365) $9850

[ 90 ] _ $10,000 - 9850
365 $9850

. $10,000-9850 365
- 310000~ 9850, 30 _ ¢ 1au
‘ $5850 30 °

Tlis method is the convention in financial markets, known as the bond equivalent basis.

If you use a financial calculator you may come up with a different answer:
If you do the following on your financial calculator,

16900 [FV]
9850 [+/-] [PV]
0 [PMT]
91/365 [N]
(CPT] /Y]

you come up with i = 6.32%. Which is greater than our lecture notes calculation of 6.18%.
Wy? Because you instructed you calculator to annualize i by compounding evervy 91
days. The calculator solved the equation:

§9850 = 510,000 \

(1 +)P0e3

Waile the method above makes sense and is a legitimate measure of an interest rate, the
nicthod in the lecture notes, known as a bond equivalent basis, is what we use by tradition
in financial markets.

In general, the yield to maturity is found by the formula

i=F'Pxﬁ
P d

where F is the face value, P is the bond price, and d is the days to maturity
D. Current Yield
The yield to maturity is the truest measure of the interest rate. However there are other

measure out there developed for their computational convenience. It this day of cheap
computing, it is easy to forget that calculators were not available until 1975 (and then cost



$200 for one that could just do arithmetic!). Bonds traded long before that, so traders used
yield measures that approximated the yield to maturity but were easier to calculate.

The current yield is an approximation used for coupon bonds. It is simply the annual
coupon payment divided by the price of the bond:

hle

.=

where C is the coupon payment and P is the bond price. This is obviously a lot simpler
that the yield to maturity

The current yie'd is a vetter approximation
~  7or longer maturity bonds and
+ when the price of the bond is close to its face value.

Example 5. Consider a 2-year Treasury note with a face value of $10,000, a coupon rate
of 6%, and a price of $9750.

the current yield is
ig= 590 _ 6 15%
9750

Recall that the true yield to maturity, from example 3, is 7.37%. So in this example, the
approxitaation is lousy because it is only a 2-year bond and it is selling at 25% below its
face value. '

E. Discount Yield

Also known as the yield on a discount basis, the discount yield is used by dealers to
quote the interest rates on U.S. Treasury bills. Again, this a computationally convenient
approximation of the yield to maturity.

Compare this to the formula for the yield to maturity;

. _E-P 365
= X

= e A ——

P d
Note there are two major differences:

(1) The vyield to matucity takes the discount (F-P) as a proportion of the bond price,
while the discount yield takes the discount as a proportion of the face value.

(2) The yield to maturity uses a 365-day year while the discount yield uses a 360-day
year.

Both of these differences make the arithmetic easier in the case of the discount yield, but
the also cause the discount yield to understate the true yield to maturity (F is always

Compound Interest and
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greater than P and 365 is always greater than 360). The discount yield will always be less
than the yield to maturity for any zero coupon bond.

Example 6: Consider a Treasury bill with 90 days to maturity, a price of $9850, and a
face value of $10,000.

_ 10,000 3850 360
10,000 90

ig - 015%4 = 6%

This is slightly less than the yield to maturity which is 6.18% (example 4).

Wow, this is a Iot of stuff to think about. What next? I suggest if you want some more
practice with calculating various interest rates, try the problems at the end of chapter 4,
page 90. There are sclutions in the back of the book for the odd numbered problems.

1L Other Measurement Issues

Understanding what the interest rate does and does tell you is as important as measuring
the interest rate in the first place. Here are a couple of issues in interest rate measurement.

A. Interest Rates vs. Returns

The yield to maturity assumes that the bond is held until maturity, If that is not true, then
fluctuations in the bond price (which occur with interest rate fluctuations) will affect the
return, or the gain to the investor from holding this security.
The return for holding a bond between periods t and t+1 is
C+Py - P

Pt
where Pt is the initial price and Pt-+1 is the price at the end of the holding period.

RET

‘We can rewrite this formula as

- S + Py ~ Py
P, P,

RET

The last term is the rate of capital gain, g, or the change in the bond price relative to the
initial bond price. So a bond's return can be rewritten as

RET =i, +g

A bond's return is identical to the yield to maturity if the holding period is identical to the
time left to maturity.

B. Maturity and Bond Price Volatility

Any bond price moves in the opposite direction of interest rates, but what determines how
much a bond's price fluctuates, or in other words, it volatility? Let's reconsider the bond
table from part I, example 3:



Bond Prices, 6% coupon rate, semi-annual payments
lyield to maturity maturity {years)
2 5 10
5.50% $10,093.49 ﬁ10,216.00 $10,380.68
_800% | $10,000.00 | $10,000.00 ] $10,000.00
6.50% . $9907.63 ] $9,789.44 $9,636.52
7.00% $9816.351 $9584 17 $9,289.38
7 50% $3,726.151 $9.384.04 $8957.78
B00% | $9,637.01] $9,188.91] $8,640.97

Look at each bond's price (the 2-year, 5-year, and 10-year bonds) as the yield to maturity
rises from 6% to 8%. The prices fall for all of the bonds, but by different amounts. The
price on the 2-year bond falls less than $400 or less than 4%. The price on the 10-year
bond falls by more than $1300 or more than 13%. This brings to the principle bond
characteristic that affects price volatility: Prices (and thus returns) are more volatile for
long-term bonds than short-term bonds. In other words, long-term bonds have greater
interest-rate risk.

Why is this the case? Intuitively, with a long-term bond, you are "locked in" to a coupon

- rate for a longer period of time. So if newer bonds are issued with lower coupon rates,
your long-term bond becomes much more valuable. If new bonds have higher coupon
rates, your long-term bond becomes much less valuable. For a bond with less than 1 year
left until maturity, the change in interest rates will not matter that much. The
consequences of changing interest rates are much more serious for bonds with longer
times left until maturity.

C. Real vs, Nominal Interest Rates

Up until now, we have not accounted for the effects of inflation on the return or interest
rate on a bond. While the owner of a bond is entitled to future payments, in an economy
with ioflation, the purchasing power of those payments is declining over time. It is pretty
much a given that $10,000 in 2011 will buy less than $10,000 today.

The interest rate (yield to maturity) we calculate in Part I is specifically the nominal
interest rate, which does not consider the impact of inflation. Instead, expected price
changes are reflected in the real interest rate. The relationship between the real and
nominal interest rate, known as the Fisher equation, is given by:

g "
L=, ¥
or

§
P

e . 3
Where ¥ is the expected inflation rate.

So the nominal interest rate is the sum of the real interest and the expected inflation rate.

"The real interest is a truer measure of the cost of borrowing. Lower real interest rates
increase the incentive to borrow (while reducing the incentive to lend). Higher real
interest rates decrease the incentive to borrow (while increasing the incentive to lend).

Compound Interest and
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8.2 Basic Concept in finance

The functions of finance in an organization is interlinked with other managerial
responsibilities and in many instances, the finance manager could also done the
role of a managing director. For the smooth functioning as well as to achieve
excellence, organizations have to concentrate on the financial impact of a
decision and its consequences. This also helps the organization to aim at 2

desired competency level against its competitors.

» In organizations, flow of money occurs at various points of time. In order to
evaluate the worth of money, the financial managers need to ook at it
from a common platform, namely one time duration. This common
platform enables a meaningful comparison of money over different time
periods. '

« Animportant principie in financial management is that the value of money
depends on when the cash fiow occurs — which implies Rs.100 now is
worth more than Rs.100 at some future time.

8.3 Time Value of Money
Common Flatform for Equating Monetary Flows

tg t, ty by tg tg tg t, tg tgtyy Time

< |

8.3.1 The Time-Value of Money

Money like any other desirable commodity has a



price. If you own money, you can, 'rent it to someone else, say a banker, who Compound Interest and
can use it to earn income. This ‘rent is usually in the form of interest. The
investor's return, which reflects the time-value of money, therefore indicates that
there are investment opportunities available in the market. The return indicates
that there is a
- Trisk-free rate of return rewarding investors for forgoing immediate
consumption

~ compensation for risk and loss of purchasing power.

«  Risk: An‘amount of Rs.100 now is certain, whereas Rs.100 receivable
next year is less certain. This 'uncertainty’ principle affects many aspects
of financial managerment and is termed as nsk value of money.

» Infiation: Under inflationary conditions, the value of money, expressedn
terms of its purchasing power over goods and services, declines. Hence
Rs. 100 possessed now is not equivalent to Rs. 100 to be received in the
future.

+ Personal consumption preference: Most of us have a strong preference
for immediate rather than delayed consumption. As a result we tend to
value the Rs. 100 to be received now more than Rs. 100 fo be received
fatter.

8.4 Future Value Vs. Present Value

Future value (FV) and present value (PV) adjust all cash flows
to a common time. This is reievant when we want to compare the cash flows
occurring at different periods of time. Either in terms of projects, performance or

turnover, the cash flows accrue to the company at different stages. The

evaluation of all these cash flows are true when they are all brought to the same

base period. Seif-Instructional M
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In financial parlance, a value of currency is not kept idie. The
amount, if invested would certainly bring additional returns in the future. This

future expectation from the present investment is termed as the future value.

Let us assume x amount is invested now and the investor expects
r% to accrue on the investment one year ahead. This is translated
into present and future values as follows:

PV =Rs. x

FV=Rs.x+(r*x)

Computing Future Value ~ Example

Let us assume Rs.1,000 is invested now and the investor expecis
5% to accrue on this investment one year ahead. This is transiated
into present and future values as follows:
PV = Rs.1,000
FV = Rs.1,000 + (.05 * 1,000) = Rs.1,050.
8.6 Computing Future Value

This can be restated as FV = PV * (1+1)
This relationship leads to the following concept of discounting the future value to
arrive at the present value i.e.,

PV=FV/(1+n)
This is the formula for equating the future value that is associated at the end of
1st year. Now the concept of time over a longer duration can be easily brought
into the above equation, where 'n' defines the time duration after which the cash

flows are expected.

Computing Present Value - Example

Let us assume that Rs.1,000 is to be received at the end of 1 year from now and

Instra the investor expects 5% rate of return on this investment.



Here FV = Rs.1,000

Hence the present value is computed as:

PV=FV/(1 +1)
= Rs.1000 / (1.05) = Rs.952.

8.7 Value with and without Compounding

Interest without compounding is a simple interest formula i.e., Pni/100
Where: P is the pninciple, n is the number of years and r is the inferest
rate.

Interest with annual compounding adds the interest received eariier to the
principle amount and increases the final amount that is received from the
investment. Hence, the FV of an investment for a two year duration with
annual compounding would be:

FV =PV *(1+n)* (1+1) = PV * (1+0)"2.

Hence Present Value is:
PV =FV/(1+r)"2.

This equation can be generalized for 'n’ years as:
PVv=FV/(1+n'n

8.8 Future Value with and without Compounding

FUTUREVALUE

Futare Vahe with
cormpovmd;

Compound Interest and

Annuinies

Selirirucoonal Materind

77



Busvine e Mathematics

Self-frstructional Material
it

8.9 Compound Value

In compounding, it is assumed that a certain sum accrues at the end of a time
duration, which is again reinvested. |n short, when a sum is invested in a year, it
will yield interest and the interest is reinvested for the next year and so on till the
time when withdrawal is made. The 3 year or 4 year bank deposit is a typical

example of this annual interest compounding. Here:

FV = Principal + interest
FV =P(1+n)n

The term (1+r)*n is the compound value factor (CVF)oi a
ump sum of Re.1, and it always has a value greater than 1 for positive r,
indicating that CVF increases as r and n increase.

Compound Value — Example

Assurmne a lump sum of Rs.1,000 is deposited in a bank fixed deposit for 3 years
for an interest rate of 10% per annum,
FV = Principal + interest
FV=P(1+r)*n
FV =1000 x (1+.10)*3
= 1000 x 1.331
= Rs.1,331.
5.9.1 Compound in Less Than a Duration
« Usually, it is comnmon pracfice to compound the interest on a yearly basis.
But, there are instances when compounding is done on a half-yearly,
quarterly, monthly or a daily basis. The haif-yearly interest rates irricate
that interest is payable semiannually, i.e., interest is received r%/2 twice
every year. When the principle of compounding is applied, this implies that

the r/2 received twice an year will yield an actual rate which is higher
than the declared (r%) rate. This actual rate is called the effective annual

rate.
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« Forinstance, let us take an iffustration of a banker declaring @ 10% p.a.

interest payable semiannually. This implies that at the end of the year the
amount received for every one rupee will be 1 * (1+[10%/2]) * (1+[10%/2]}
ie, (1.05) * (1.05) = (1.05)"2 = 1.1025.

« The Effective interest rafe is 10.25%

8.10 Effective Interest Rate

The effective interest rate in the previous example was computed as 1.1025-1 =
1025 and in percentage terms it will be 10.25%. The effective rate of interest is
hence 10.25% and not 10%. This ¢an be expressed through the following
formula:

FV = PV {1+ r/m)*(m*n)

where m is the number of times within a year interest is paid.

When haif-yearly interest payments are made 'm’ will be 12/6 i.e., 2. When
quarterly interest payments are made 'm' will be 12/3 1.e., 4 When monthly
compounding is done then 'm’ will be 12/1 i.e., 12. Compounding on a daily
basis, 'm’ will be 365/1 L.e., 365. This is referred to as multi-period compounding.

8.11 Continuous Compounding

Sometimes compounding may be done continuously. For exampte, banks may
pay interest continuously; they call it continuous compounding. It can be
mathematically proved that the continuous compounding function will reduce to
the following:

FV = PV x {e*x}
When x = (r * n) and e is mathematically defined as equal to 2.7183.

Continuous Compounding — Example

The present value of an investment is Rs.1,000. At 10% p.a. interest rate
at the end of S years, the future value of this investment with continuous
compounding wili be:

FV = 1,000 x {e*.5} = Rs.1,648.72

Whenx = (r*n=.1x5=.5)and e is mathematically defined as equa' to
2.7183.
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Similarly, the present value of a future flow of Rs.100 at 10% p.a.
interest rate to be received 5 years hence with continuous compounding will be

PV =FV/{e 5} =100/ {e".5} =Rs.60.65.
8.12 Annuity

There can be a uniform cash flow accrual every year over a period of 'n’ years.

This uniform flow is called "Annuity".

An annuity is a fixed payment (or receipt) each year for a specified
number of years. The future compound value of an annuity as follows:

FV =A{[(1+r)*n - 1)/ 1}
The term within the curly brackets {} is the compound value factor

for an annuity of Re.1, and A is the annuity.

The present value of an annuity hence will be
PV = A {[1 - 1/(1+r)*n)/1}
Annuity - Example
-The Future value of Rs.10 received every year for a period of 5 years at an
assumed interest rate of 10% per annum will be
FV =10 {[(1+0.1)*5 - 1)/ 0.1} = Rs.61.051

The Present value of Rs.100 to be received every year in the next
five years at an assumed interest rate ¢f 10% per annum will be

PV =100{[1 - 1/(1+0.1)"5}/0.1}=Rs.379.08

8.12.1 Resent Value of Perpetuity

Perpetuity is an annuity that occurs indefinitely. |n perpetuity, time period, n, is so
large {mathematically n approaches infinity) that the expression (1+r)*n in the
present value equation tends to become zero, and the formula for a perpetuity
simply condenses into:

PV = Alr

where A is the annuity amount occurring indefinitely and r is the interest
rate.


http:J\5VO.l}=Rs.379.08
http:Rs.60.65

Present Value of an Annuity Vs. Perpetuity Compound In%ﬂ; c::;cj
i

Amoum Rs.

sz/'

S T S A ST T T S S
Yeoue

—AL - 10 % AL - 5% AC - 8% - -PC-TU%-——-PC-GB%-—-PCwEJ%l |
AC - Aunigty Compmnding PC - Perpetinly Compoundmg  Amnty / Ferpehaty Vahue - Ra (0

8.13 Regular Annuity Vs. Annuity Due

« When an annuity's cash payments are made at the end of each period, it
is referred as regular annuity. On the other hand, the annual
payments/receipt can also be made at the beginning of each period. This
is referred to as annuity due.

- Lease s a contract in which lease rentals (payment) are to be paid for the
use of an asset. Hire purchase contract involves regular payments
(instaliments) for acquiring (owning) an asset. A senes of fixed payments

starting at the beginning of each penod for a specified duration is called an
annuity due.

8.13.1 Annuity Due

The formuta for computing value of an annuity due is:
FV = A[(1 + 1) + (1+1)"2+ (141)"3 +...+ (1+1)*n-1]

FV =A{{(1+n)*n-1) 1]/ 1}
Hence,

PV =A {1 - 1/1+0)*n)ir} * (141)
PV = A(PVRA I)*(141)

Where PVAR is present value of regular annuity and r is the interest rate.

Annuity Due — Example

The future value of Rs.10 received in the beginning of each year fora 5 year
duration at an assumed rate of 10% p.a. will be:
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FV = 10 {[(1+0.1)*(5-1) 1] / 0.1} = Rs.46.41.

The present vaiue of Rs.100 received in the beginning of each year
for 5 years at an assumed interest rate of 10% p.a. will be:
PV =100 {[1 - 1/(1+1.1)*5//0.1 } x (1+0.1)= Rs.416.98.

8.13.2 Multi Period Annuity Compounding

The compound value of an annuity in case of the multi-period compounding is
given as follows:

FV = & {[(1+r/m)*{n x m}] -1 } /(r/m)>
PV = A ({1 -[1/(1+r/m)y*(n % m)]} / {r/m)
In all instances, the discount rate will be (r/m) and the time harizon
will be equal to (n x m).
8.14 Present Value of a growing annuity
An annuity may not be a constant sum through the time duration, it
may also grow at a rate of g% every year. This is referred as a growing annuity.

When there is a growth for specific number of years, the present value ofan
annuity is stated using the following formuila:

11 X(1+-g)“}

PV =A
r-g r-—g (1+n0)"

Present Value Of A Growing Annuity ~ Example

An annuity of Rs.100 is expected to grow at a rate of 2% every year. Assuming

the interest rate as 10% per annum the present value for this growing annuity for
a O year duration will be:

PV = 100 x {(1/0.08)-[(1/0.08)*(1.02)A5/(1.1)*5]}
= Rs.393.07.

FUTURE VALUE OF A GROWING ANNUITY

Future value of a growing annuity can be defined by the following fermula:

FV=A[(1+:)“_(1+5)“J
(r-g) (r-g)
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Future Value Of A Growing Annuity - Example

Future value of an annuity of Rs.10 growing at 2% every year with an
assumed rate of interest at 10% for five years is computed as;

FV = 10 x {[1.146/0.08]-{1.0245/0.08}}
= Rs.63.30

8.15 Present Value of Perpetuity -

In financial decision-making there are number of situations where
cash flows may grow at a compound rate. Here, the annuity is not a constant
atrount A but is subject to a growth factor 'g'. When the growth rate 'g'is
constant, the formula can he simplified very easily. The calculation of the present
value of a constantly growing perpetuity is given by the following equation:

PV = A/(140) + A(T+g)/(1+)42 + A(1+g)A2/(1+1)43 + ...

. This equation can be simplified as:

PV=A/
r-9)

8.16 Future value of a growing annuity

In financial decision-making there are number of situations where cash flows may
grow at a compound rate. Here, the annuity is not a constant amount A but is
subject to a growth factor 'g'. When the growth rate 'g’ is constant, the formula
can be simplified very easily. The calculation of the present value ofa constartly
growing perpetuity is given by the following equation:

PV = A/(1+r) + A(1+g)/(1+7)22 + A(1+g)*2/(1+r)*3 + ...

This equation can bz simplified as:

PV=A/(r-g) ,
Present Value Of A Growing Annuity Perpetuity —
Example

The present value of an annuity of Rs.10 growing at 2% every year with an
assumed rate of interest of 10% to perpetuity is:

PV=A/(r-g)

PV =10/(0.1 -0.02) = Rs.125.
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8.17 Debentures

Debentures are creditor ship securities representing long-term indebtedness of a
company. A debenture is an instrument executed by the company under its common seal
acknowledging indebtedness to some person or persons to secure the sum advanced. It
is, thus, a security issued by a company against the debt. A public limited company is
allowed to raise debt or loan through debentures after getting certificate of
commencement of business if permitted by its Memorandum of Association.
Companies Act has not defined the term debenture.

Debentures, like shares, are equal parts of loan raised by a company. Debentures are
usually secured by the company by a fixed or floating debentures at periodical intervals,
generally six months and the company agrees to pay the principal amount at the expiry
of the stipulated period according to their terms of issue. Like shares, they are issued to
the public at part, at a premium or at a discount. Debenture-holders are creditors of the
company. They have no voting rights but their claims rank prior to preference
shareholders and equity shareholders. Their exact rights depend upon the nature of
debentures they hold. '

The capital is not only raised through shares, it is sometimes raised through loans, taken
in the form of debentures.

A debenture is a written acknowledgment of a debt taken by a company. It contains a
contract for the repayment of principal sum by some specific date and payment of
interest at a specified rate irrespective of the fact, whether the company has a profit or
loss. Debenture holders are, therefore, creditors of the company. Of course, they do not
have any right on the profits declared by the company. Like shares, debentures can also
be sold in or purchased from the market and all the terms used for shares also apply in
this case ; with the same meanings.

Letus take some examples.

Example : Find the income percent of a buyer on 10 % debentures of face value Rs.100,
availablein the marketat Rs. 125.

Solution : Income onRs. 1251sRs. 10
Income on Rs, 100=—E)-—>< 100=Rs.8
1255
Income, in percents, on debentures =8%

Example : Shama has 1000 shares of par value Rs. 10 each of a company and 200
debentures of par value Rs. 100 each, The company pays an annual dividend of 10% and
an interest of 15% on debentures. Find the total income of Shama and rate of return on
herinvestment.

1000x 10X 10 |
Solution ; Dividend on 1000 shares =Rs. T =Rs. 1000
200 x100 %15
Annual interest on 200 debentures =Rs. 100 =Rs. 3000



. Total income of Shama = Rs. 4000 Compound Interest and
Anruities

Total investment of Shama =Rs. { 1000 x 10+ 200 x 100 )=Rs. 30000

4000 x 100

30000 ] %=13.33%

. Rate ofreturn= (

Debentures can be of following types:
Redeemable and Irredeemable Debentures

Redeemable debentures are those which can be redeemed or paid back at the end of a
specified period mentioned on the debentures or within a specified period at the option
of the company by giving notice to the debenture holders or by installments as per terms
of issue. Irredeemable debentures are those which are repayable at any time by the
company during its existence. No date of redemption is specified. the debenture holders
cannot claim their redemption. However, they are due for redemption if the company
fails to pay interest on such debentures or on winding up of the company. They are also
called perpetual debentures.

Secured and Unsecured Debentures

Secured or mortgaged debentures carry either & fixed charge on the particular asset of
the company or floating charge on all the assets of the company. Unsecured debentures,
on the other hand, have no such charge on the assets of the company. They are also
known as simple or naked debentures.

Registered and Bearer Debentures

Registered debentures are registered with the company. Name, address and particulars
of holdings of every debenture holders are recorded on the debenture certificate and in
the books of the company. At the time of transfer, a regular transfer deed duly stamped
and properly executed is required. Interest is paid only to the registered debenture
holders. Bearers debentures on the other hand, are transferred by more delivery without
any notice to the company. Company keeps no record for such debentures. Debentures-
coupons are attached with the debentures-certificate and interest can be claimed by the
coupon-holder.

Convertible and Non-convertible Debentures

Convertible debentures are those which can be converted by the holders of such
debentures into equity shares or preference shares, cannot be converted into shares.
Now, a company can also issue partially convertible debentures under which only a part
of the debenture amount can be converted into equity shares.
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EXERCISE
What do mean by inflation?
What is meant by Return?
What is the Interest without compounding? Write formula.
What do mean by Annuity?
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