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Differentiation and 
Expansion of Functions 

Chapter Includes: 
1. Partial Differentiations 
2. Homogeneous Function 
3. Euler's Theorem on Homogeneous Functions 
4. Total Differential Coefficient 
5. Chatlge of Variables 

1.1 PARTIAL DIFFERENTIATIONS 

1.1.1 FUNCTIONS OF TWO VARIABLES : We know that the quantities like area, 
volume depend on two and three other quantities; re~vely. For example: 

Area of a triangle :::e ! x base x corresponding atti~ 
2 

Area of a rectangle = length x breadth 

Volume of a parallelopiped = length x breadth x height 
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In terms of functions we can say that area is a function of two variables, where as 
volumes is a function of three variables. 

Let A, B and C are three sets such that A represents base of a triangle and B represents 
attitude of the corresponding bases of the triangle and C represent the area of 
triangle, then we can define a function f from the set A x B to C. Th.is function/ is 
called function of two variables. 

Definition 1.1: Let A, B andC are any three non-empty sets, then the function/: Ax 

B➔ C, is called a function of two variables, where 

a e A and beB then 3 c e C, such that/( a, b) = c 

The set A x B is called domain of the function and C is called codomain of the 
function. 
In general we write u = f(x, y) for a function of two variables x and y. The variables x, 
and y, are independent where as u is dependent. The function u is called single valued 

S~larly the function of three or more variables can be expressed as 

u = f(x,y,z ) 

or v=f(x1,x2 , •• • x,,) 
1.1.2 Limit of a function oftwovuiables: If function f = (x, y )is said to be limit L, at 

( a, b) if for every e> 0 however small there exists 6, such that 

IJ(x,y )-Li<ewhere l(x-a)i< 6 and Ky-b~< 6 

we also write lim/(x, y) = L 

1.1 .3 Continuity of function of two variables : A function / = ( x, y) is said to be 
continuous at ( a, b) if for every e> 0 however small there exists 6 > 0, such that 

if(x,y)- f(a,b~<e 

a-6<x<a+6 and b-6<y<b+6 

Alternatively, /( x, y) is continuous at ( a, b) if 

lhncx,y)---+(a,b) f( X, Y) = f(a, b) 

or limc1i.h)---+(o+o) /( a+ h, b+ k) = /( a,b) 

1.1.4 PARTIAL DERIVATIVES (OR PARTIAL DIFFERENTIAL COEFFICIENT): 

Let/( x, y (x ~ :.fun~tion :,f two indepen~ent v~able x and y, ~en . . . 

lim.
11

--..o f y) /( y), if exISts, 1s called partial denvatives or 
h 

partial.differential coefficient of /( x, y) with respect to x, when y is treated as 



constant. It is denoted by of or f,.. similarly limk--+0 f( x, y + k )- f ( x, Y) , i~ exists 
ox k 

is called partial derivative or differential coefficient of f(x, y) with respect y ,' wheb x 

is treated as constant. It is denoted by fJf or fr' 8y 
The process of finding the partial derivative or partial differential coefficient, is 
known as partial differentiation. 

It is clear that the partial derivative of a function of two variables keeping one variable 
as constant is same as the ordinary derivatives. 

The other higher partial derivative of fx, f Y (or of, of) with respect to x an denoted ax 8y 

by ( 
a2 f a2 f a2 f) 

fa, or-2' fyx or -, -2 ax axay ay 

For ~ (af) = a
2 
f, ~ (af)= a

2 
f 

ax ax ax2 · ax ay axay 

~(of),= ,if ~(af)= a2 f 
ay ax ayax • ay ay ay2 

cif a2 f · a2 f a2 f 
Remark: - =-, It is not always possible that - = -

ayax axay axay ayax 

SOLVED EXAMPLES 

. . au ou a2u o2u au 
Example 1 : If u = sin( x + y). Find -, -, -

2
, -

2
, -, and show that 

ax fJy ax 8y f)yax 

o2u o2u o2u 
-=- and -+u=O 
axf)y ayax ax 2 ' 

o2u 
-

2 
+u=O, 8y 

Solution : Givenu = sin( x + y) 

Differentiating above partially w. r. t. x 

ou = cos( x + y} Similarly ou = cos( x + y) 
ax ay 

o2u 
- =-sin(x+ y), 
ox2 

=-u 

~=-sin(x+ y)(l} 
ayax 

=-u 

o2u . 
- =-sm(x+ y) ox8y 
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=-u 

82u 
- 2 +u=O, 
ox 

and B2u 
-+u=O ayox , 

From above it is clear that, 

82u B2u B2u a_2u 
ayox = oxay = ox2 = ay2 

Solution : Given u = log --(
x-y) 
x + y 

Differentiating above p. w. r. t x 

·au = ( X + y) X {1( X + y )-1( X - y )}, 

OX ( X -:.Y) ( x + y ) 2 

au 2y 

ax= (x2 - y2y 
a2u o(x2 - y2)+2xx2y 

ax2 = ( 2 2)2 
X -y 

a2u -4xy 
~2= (x2 - y2)2' 

B2u 2{x2 - y2) +2yx2y 
- = 
8yox {x2 - y2)2 

B2u 2x2 ~2y2 + 4y2- •• 
= and ' 

8yox (x2 - y2)2 

B2u 2x2 + 2y2 
-= oyox (x2 - y2)2 

=-u 

B2u 
-+u=O 
ay2 

B2u 
-+u=O oxay 

Differentiating above p. w. r. t. y 

au (x+y)x{-I(x+y)-I(x·-y)} 
ay (x- y) (x+ y)2 

au = {-x - y - X + y} 
. ay x2 + y2 

au ix 
ay x2 _ y2 

B2u - 4xy . 

ay2_ - (x2 + y2)2 . 

- = 
fJxi)y 

= 

-2{x2 -12)-2x {-2x) ' 

(x2 - y2)2 



- 2(x2 + y2) 
- (x2 - y2)2 

o2u o2.u 
- -= - -oyox oxoy 

Alternatively, u = log(x- y )-log{x + y) 

(Find U.x, Uxy, u Y' u y.x) 

o2u o2u 
Enmple 3 : If u = x tan y + y tanx then prove that -- = -­

oxoy oyox 

Solution : We have u = x tan y + y tanx 

Differentiating above p. w. r. t. x 
ou ox =tany + ysec2 x, 

o2u 
--=sec2 y + sec2 x oyox ... (1) 

Similarly, 

ou 2 - =xsec y + tanx oy 

and fnu =sec2 Y + sec2 x 
oxoy . ... (2) 

From equation ( 1) and (2) 

- -= - -
ayax oxoy 

. o2u o2u 
Example 4 : If u = yx, then verify that oxoy = oyox 

Solution: We have u = yX, 

ou 
:. -= yxlogy 

ox 
ou x-1 -= xy oy 

o2 \ l 
_ u_ = xyx-l logy+ yx x -
oyox Y 

.a2u y-1 .x-11 --. = YA .+x · y ogy 
oyox 

· = xy.x-l logy+ yx-1 = (1 + x logy )y.x- l 

= {1 + x logx )yi:-I 
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-=--oxoy ayox 

xy . iJ2u o2u 
Example 5 : If u = log 2 2 then venfy that - = -

X + y i'Jxoy O)'OX 

Solution: We have u = log 2 xy 2 
X + y 

u = logx + logy- log{x2 + y2) 

Differentiating partially w. r. t. x, 

au 1 2x 
:. i'Jx = :;- x2 + y2 

au x2 + y2-2x2 

i'Jx = x(x2 + /) 

and 

or 

Similarly, 

au 1 2y 
oy = y x2 + 1 2 

fJu +x2 + y2 _ 2y2 

oy = y(x2 + y2) 

ou · y2 -x2 ou x2 -y2 

ox= x(x2 + /) or oy = y(x2 + y2) 

a2u 2y(x3+xy2)-2xJ'(x2-/) a2u 2x(xy2+y3)-2xJ'(x2-y2) 
--=----------and--=-....... --'---'---~ 
oxoy x2 (x2 + y2)2 i'Jxoy y2 (x2 + /)2 . 

o2u 2yx3 + 2:ti.,, -1.:tl.,, -2x3 y o2u 1.t1', + 2xy3 -1.t.,, 1+ 2xy3 
= -= 

&yox x2 (x2 + y2)2 ox&y Y2 (x2 + y2)
2 

o2u 4x.,,y 
and 

o2u 4xy 
--= --= 
oyox t2(x2+ /)2 ayox (x2 + y2)2 

o2u 4x.,,y 4xy o2u 4xy.,, 
--= = or--= 
oyi'Jx l(x2 + /)2 {x2 + i)2 ayox ,Z{x2 + 12)2 

= 
4xy 

(x2 + /)2 
:. From above we have 

o2u o2u 
= 

oyi'Jx &yax 



ou ou ou 
Example 6: If u = x3 y + y 3 z + z3x"'then prove that x-+ y-+ z-= 4u ax oz az 

Solution: We have u = x 3 y + y 3 z + z 3x, 

... (2) 

. .. (3) 

.. . (4) 

... (1) 

Multiplying (2), (3), (4) respectively by x, y and z and adding we get, 

ou ou ou 
x-+ y-+ z-=3x2y + z3 +x3 +3y2z+ y 3 +3z2x ox ay oz 

=4(x3y+ y 3z+z3x) 

or 
ou ou ou 

x-+ y-+z-=4u ox ay az from (1) 

o2u o2u 
Example 7 : If u = f(x + ay) + cj, ( x - ay) then prove that x-

2 
= a2 

-
2 ay ax 

Solution: u = f(x + ay )+cj,(x-ay) 

and 

Now, 

ou = f'(x + ay) +cj,'(x-ay) 
ox . 

02; =J·(x+ay)+q,•(x-ay) 
ax 

ou = af' ( x + ay) + acj,' ( x - ay) 
ay 

02
~ =a21·(x+ay)+a2q,•(x-ay) 

ay 

from equation (I) and (2) we have, 

a2u 2 o2u -=a-ay2 ox2 

Example 8 : If u = sin- 1
( y) + tan-1 (~J then prove that x ou +you = O 

X Y . ax ay 

... (1) 

... (2) 

Differentiation and 
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Solution : Given u = do-• ( ; ) + tan-•{; J 

Differentia~g above p~ally w. r. t. x 

or 

au 1 (-y) l I 
'fJx = ✓1-½ X 7 + (1 + ½) X Y 

au ty y1 l 
- = - ---- + ----'-- X -

ox xl ✓1 -½ x2 + y2 "J' 

au 
ax 

au 
x - = 

ax 

y + y 
x.,/x2 - y2 x2 + y2 

y + xy 
.,Jx2 -:--- y2 x2 + y2 

We also have 

au } 1 1 ( X] 
17}' = ✓} - ½ X; + } + ½ X -,7 
au i 1 x 
- =--=== X - - ---
17}' ✓x2 - y2 x x2 + y2 

:. Yau= y xy 
cy .Jx2-y2 x2 + y2 

Adding ( 1) and (2) we get, 

au au 
x-+ y- =0 ax cy 

Example 9 : If u = sin - l ( X - y J then prove that X au + y au = 0 
. x + y ax cy 

Solution: Given u = sin-1( x - YJ · 
. x + y 

Differentiating above partially w. r. t. x 

au = } X { 1( X + y ) - 1(;- y)} 
ox 1-(x- YJ2 (x + y) . 

x + y 

. .. (1) 

. .. (2) 



or 
(x+ y) x+ y-x+ y 

ax= .Jx2+y2+2xy-x2-y2+2.xyx (x+y)2 
ou 

au ly 
ax= 1.✓xY(x+ y) 

or 
au .xy .rx; 

x-= =--
ax (x+ y)..{xy (x+ y) 

Similarly, ou = 1 -{-l(x+ y)-l(x- y)} 
8y 1-(x-yJ2 (x+ y)2 

x+y 

or 
= (x + Y) -x - }' - X + }' 

I X l "t1 + y2 +2xy-l - y2 +2xy (x+ y) 

au . 1 -2.x -x 

(7)' = (x + y) * = ..[xy ( X + _J) 

au -.xy ,Fi. 
:.y 8y = (x+ y)..Jxy =~ (x+ y) 

Adding (1) and (2) we get, 

au au 
x-+ y-=0 ax ay 

. ( )~ a2v a2v a2
v Example 10 : If . v = x2 + /· + z2 2 then prove that - 2 + - 2 + - 2 = 0 

. ax ay az 

or 

Similarly 

... (1) 

. .. (2) 

... (1) 

... (2) 

Di.ff erentiation and 
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and ~; ={x2 + y2 + z2)-½[2z2 -x2 - Y2] 

Adding (1), (2), and (3)> we are left with 

a2 82 82 -½ . 
V V V ( 2 2 2) 2[ 2 2 2 2 2 2 -+-+-= X +y +z 2x -y -z +2y -x -z ax2 ay2 a-z2 

or 

or 

83 . 
Example 11: If u=e~YZ then show that u =(1+3xyz+x2y2z2).cYZ axayaz . 

Solution : u = e:cyz 

au 
:. - =xye:cyz 

and 

or 

or 

or 

az 
82 u ~-= xy x xz eX>'% + x e:cyz 
By& 

aJ u = (2xyz+ 1 + x2 y2 z2 + xyz) e:cyz 
axayaz 

8
3

u ) --=(1+3xyz+x2y2z2 f?YZ axayaz 

Example 12: If u = log(x3 + y3 + z3 -3xyz) then show that 

( 
a a o )2 

9 
ax+ay+az u=-(x+y+z)2 

Solution : Given u = log(x3 + y 3 + z3 -3.xyz) 

... (3) 



au 3x2 -3yz 
:. ax= x 3 + y3 +z3 -3.xyz 

au 3y2 -3zx 
a Y = x3 + y 3 + z3 -3.xyz 

And 
au 3z2 -3xy 
·az = x3 + y 3 +z3 -3.xyz 

or (
~+~+~Ju= 3(x2 + i +z2-xy- yz-zx) 
ax ay az (x3+y3+z3-3xyz) 

- 3(t1 + , 1 + t 1 - ;;p- ,t-tt) 
- (x+ y+ z){t1 + p1 + t1-t,-,t-tt) 

or (a a aJ 3 
ax+ ay + az u (x+y+z) 

Now (~+~+!)
2 
u=(~+~+!)(~+~+!Ju 

& & az ax & az ax ay az 

=(~+~+!J(~+ & + &J 
ax ay O'Z ax ay az 

(~+~+~Ju=(~+~+!J( 3 J ax ay az ax ay az x+y+z 
From (1) 

3 3 3 
=-(x+y+z)2 -(x+y+z)2 (x+y+z)2 

or . ( a + a + a Ju_ 9 
ax 11)1 8z -- (x+y+z)2 

x2 y2 z2 
EHmple 13 : If -

2
- + -

2
- + -

2
- = 1 Prove that 

a +u b +u c +u 

Where u is a function of x, y and z. 

Solution: 

Differeniating partially w. r. t. x, we get 

... (1) 

. .. (1) 

Differentiation and 
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or 

Sim.ilarl y, 

And 

Putting 

2x 

a2 +u 

in the above equation we get, · 

ou 2x 1 
-=---x-
Bx (a2 +u) P 

ou 2y I 
-=-----'-- X -

(7)1 (b2 + u) P 

ou 2x I 
- = - --x-
uz (c2 + u) P 

Squaring and adding above we get, 

or 

or 

... (2) 

... (3) 

.. . (4) 

.. . (5) 

from (1) 

... (6) 

Now multiplying equations (2), (3), and ( 4) by x, y and z respectively and adding we 

get, 



or 
ou ou ou2 2 

x-+ y-+z-=-xl=-ox oy ozP p 
from (l) 

:. from (6) and (7) we have, 

a2 . 
E11mple 14: If X-

1 y 1 zz = C show that for X = y;;; z-z = -(x log ex r1 

oxay 

Where z is a function of x and y. 

Solution : Given x.r y 1 z1 = c 

Taking log on both sides, we get 

xlogx+ ylogy+zlogz= c 

Differentiating partially w. r. t. x, we get 

l oz 1 oz t x - + logx + - log z + t x - · - = 0 
t ox tax 

or (l+logx)+ 
0
2(1+logz)=O ox 

oz (1+ logx) 
-= 
ox (l + logz) 

or 

Similar!
. oz _ ( l + logy) 

y, -
oy (l + logz) 

Differentiating (3) partially w. r. t. x we get, 

or 

l oz 
~2 --0·(1 + logz) + - ·- (l +logy) 
u z z ox 
oxoy = (1 + logz )2 

a2z l l+logy oz - =-x---x-
oxoy z (1 + logz )2 ox 

= ! x (1 +logy) {J l + logxl} 
z (1 + logz)2 ·11 + logz 

... (2) 

... (3) 

... (1) 

= 
(1 + logx )(1 + logx) 

x(l + logx )(I + logx) 
Puttingx ""y = z 

... (7) 

Differentiation and 
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1 1 
=- = 

x(I + logx) x(loge+ logx) 
(-:loge= I) 

1 
= 

x log( ex) 

2 a z ( )-1 - -=- xlog ex 
Bxoy 

2 a2
u 1 Example 15 : If u = f(r ), and r 2 = x2 + y show that -
2 

= f"(r) + - f'(r) 
ax r 

Solution : Given u = f ( r), 

Now, 

Similarly, 

au= f'(r)· ar 
ox ax 

au =/'(r)·~(From(I)) 
ax r 

ar or X 
or 2r-=2x-;;::;-

8x ax r 

a2u = f"(r)· Br-~+ f'(r) [r-x~] 
ax2 ax r r 2 

... (1) 

x2 
r- ­

r 
,2 

(From(l)) 

2 2 2 

~ = f"(r)·~+ f'(r) L ax2 ,2 ,3 

a2u y2 x2 
- =J\r)·-+ f'(r)-ay2 ,2 ,3 

Adding above we get, 

2 2 2 2 (x2 + y 2
) 

a U + a U = f"(r)• X + y + f'(r) --'------
OX2 ay2 ,2 ,3 

a2u + a2u = f"(r)+ ! f'(r) (-: ,2 =x2 + y2) 
ox2 oy2 r 



EXERCISE 1.1 

Q 1 V ·ry o2u o2u fi fill . fun . . . en - = - or o owmg coons -
oxoy oyox 

2 2 

( 
.• ) ] X + y 
11 u= og----'--

xy 

(iii) u=xY (iv) u =xsiny + ysinx 

(v) u = ay-bx 
by - ax 

(vi) 

Q ~ If . -1(* -✓Y ] h th ou ou O • M• u = sm , c s ow at x-+ y- = . 
-.; x - v y ox oy 

2 2 ( ::I.. ) . - 1 X + y OU OU vu OU 
Q.3. If u = sin - --prove that --- = 4 1---- . 

x +y ox oy ox oy 

Q. 4. If u = x2 tan-1 
- - y2 tan-1 - prove that - = 

2 2
. (Y) (x) 02

u x2 
_ y2 

X y OXO)' X + y 

Q. S. If u = sin-1( Y) - tan-1
(~) prove that x ou +y ou = 0 . 

X y OX 8y 

-J(X-y) OU OU Q. 6. If u = cos - - , prove that x-+ y - = 0 , 
x + y ox 8y 

o2u o2u 
Q.1. Ifu= f (x-by)+~(x +by) provethat b2

-
2 

= -
2

. 
ax ay 

- ( ) ( )2 o
2
u 2 o2

u Q. 8. If u = sm y + ax - y + ax prove that -
2 

= a -
2 

. 
ox oy 

2 ( ) o2
u o2

u Q. 9. If u = 2( ax + by) - x
2 + y 2 and a2 + b2 = L find the value of 8x 2 = oy2 . 

½ o2u o2u o2u 2 
Q. 10. If u =(x2 + y 2 + z2

) 
2 then prove that -+- +-=-. 

ox2 By2 8z2 
U 

Q. 11. u =log,, where ,
2 =(x - a)2 +( y- b)2 +(z-c)2 show 

o2u o2u o2u 1 
- +-+-=-
8x2 ay2 az2 , 2 · 

. o2u o2u 
Q.12. If u=e .. (xcosy -ysm y ) then prove that -

2 
+-

2 
=0 . 

ox By 

that 

Differentiation and 
Expansion of Functions 
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Q. 13. If u=alog(x' + /) + btan- '(:%') , prove that ~> :>o. 
Q 1 If - 1 X)' o2u 

. 4. u = tan ( ) , show that -- = 
l+x

2 
+ y2 oxoy (t+x2 + y2)½. 

Q. 15. If u =logx2 + y2 + z2 
, show that x 2 + y2 + z2 - + - + ~ = 1 ✓ ( )(o

2
u o

2
u o

2
) 

ox2 ay2 oz2 

y xou l OU 
Q.16. Ifu=x, provethat --+ - ·-=24 

y ox logx ox 

~

2 y2 z2 
OU OU OU 

Q.17. If u= x y z thenprovethat -+-+-=0 
I I 1 fu 8y & 

Q.19. If u=tan-
1(Yl ),provethat 

02
~ + 

02
~ =0. Ix ox ay 

2 2 2 02u 02
U o2u Q. 20. If u =log x + y + z , prove that x- = y- = z-- . oy& &ox oxoy 

Q. 21. If u =ea:x+by f( ax - by), prove that b ou + a ou = 2abu 
ox 8y 

1 02
U o2u o2u X 

Q. 22. If u 2 2 2
, prove that - 2 + - 2 + - 2 = 2 

x + y + z ox 8y & (x2 + y2 + z2) 

Q. 23. If u =log (x2 + /), show that x: + y: =2. 

Q. 24. If u =4> ( x, y, z) = 0, show that (oy) (oz) (0
xJ = - 1. Hence find, 

oz X OX y 8y y 

(:} x constan~ (:} y constan~ (:} z constant. 

Q. 25. Find the partial differential coefficient of x 3 y2 w. r. t. x and y. 

1.2 HOMOGENEOUS FUNCTION 

A fimction /( x, y) of two independent variables x and y is said to be homogeneous, if it 
can be expressed in the form, 



I 1, . }(~: y) d ao~h + iciix_n-1 y '+ dixn-2 Yi + a3X11- J j,3 + .. . +ally/I .. . (1) 

Here each term in the expression has degree n. Thus /( x, y) is a homogeneous 
function of degree n in variables x and y. 

We can write J( x, y) as : 

f(x,y)-x' [a, +a,(½)+a,(½)' + ... +(½)"] 
J(x,y) =xn !(½) 

Thus every homogeneous function of independent variables x and y can be expressed as 

xnf(½) 
1.3 EULER'S THEOREM ON HOMOGENEOUS FUNCTIONS. 

If f ( x, y) be a homogeneous function of x and y of degree n, then, 

xlf + yaf =nf 
ox oy 

Proof: As/( x, y) be a homogeneous functions of degree n, then it can be written as 

(1) 

Differentiating (1) partially w. r. t. x. 

f~;y) = nxn-lf( ½)-xn f{½}; 
: = nxn-lJ(½)-xn-2 f{½) ... (2) 

Similarly, 

(3) 

Now, multiplying (2) and (3) respectively by x and y we get, 

x! + y: =nxn !(½)-xn-ly f'(½)+x 11-1y J' (½) 
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or 
Bf 8f 

x-+ y-=n·f ax ay 
fr{)m (1) 

Remark : If f ( x 1,x 2 •.• x,. ) be a homogeneous function of degree n, of independent variables 

Xi,Xz ... X,. then 

SOLVED EXAMPLES 

Example 1. : Verify Euler's Theorem for the function 

f(x,y) = ax2 + 2hxy + by2 

Solution : Here, f( x, y) = ax2 + 2hxy + by2, is a homogeneous function of degree 2, 

So, xaf + yaf =2f 
ax ay 

Now, f(x,y) = ax2 + 2hxy + by2 

Differentiating partially w. r. t. x, 

af = 2ax + 2hy ax 

Similarly, 8.f = 2hx + 2by 
ay 

Multiplying (2) and (3) by x and y respectively and adding we get, 

x! + y: =2[ax2 
+hxy+hxy + by

2
] 

or x: + y: =2[ ax
2 

+2hxy+ by
2

] 

xaf + yaf =2f 
ax ay 

or from (1) 

... (1) 

... (2) 

... (3) 

Example 2. : If u = ( ½) + (½)+(½}then prove that x: + y: + z: = 0 

Solution : Here, u is a homogeneous fimction in three variables of degree 1-1 = 0. So, from 
Eulers Theorem, 

au au au 
x-+ y-+z-=0·u=0 ax ay az 



E.xample3. : Ifu=sin-1[7;-~)showbyEuler'sTheorem xou + you =0 
x+ y ax ay 

Solution : Here, sinu = [ i: ~) = / (let) 

. ·. f is a homogeneous function in two variables of degree ! _ I = 0. 
2 2 

So, from Euler's Theorem, we have, 

or 

af aJ 
x-+ y-=O·f=O ax &y 

x~(sinu) + y~(sinu) = 0 ax &y 

ou ou 
or xcosu-+ ycosu-=0 

ax ay 
ou ou 

x-+ y-=0 ax &y 
or 

Example 4. : If u = tan-1[x3 

+ y3} show that x au+ you= sin2u 
x+ y ax ay 

·: f=sinu 

·: cosu ~ 0 

Solution: Here, u = tan-1[x
3 

+ y3 ) = f(let)is a homogeneous functioninxandy of 
x+y 

degree 3 -1 = 2 

So, from Euler's Theorem, we have, 

xaf + yaf =2/ 
ax ay 

Now 
a a 

x-(tanu)+ y-(tanu)=2tanu 
ax ay 

2 au 2 ou 
xsec u-+ ysec u- =2tanu 

ax ay 

or 
ou ou 2 

x-+ y-=2tanucos u 
ax ay 

or 
ou ou 2 

x-+ y- =2tanucos u 
ax ay 

or 
ou au . 

2 x-+ y-=SlD U 
ax ay 

Differentiation and 
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. . 

. . -[-·x3+y3} .. 
Example 5. : If u = tan 1 

--- then prove that 
x+y 

2 o2
u a2

u 2 a2
u ( ) . x -+2xy--+ y -= 2cosu - l sin2u 

&:2 oxoy ay2 

Solution : As in example ( 4) 

au ou . 
2 \3x + y ay ==sm u 

Differentiating above partially w. r. t. x we get 

a2u 82u ou 
x - + y - =2cos2u-

ax2 axay ax 

Again differentiating (1) partially w. r. t. y, we get 

82u ou 82y ou 
x-+-+ y-=2cos2u-axay O)' ay 2 ax 

... ( l) 

Multitplying (2) and (3) respectively by x and y, and adding we get, 

... (2) 

. .. (3) 

2 8
2
u a2

u 2 a2
u ou ( ou ouJ x - +2xy - + y -==(2cos2u-l)- x-+ y-

ax2 oxay ay2 ox ax ox 

a2u 82u 82u 
or x2

- 2 +2xy- - + y 2
-

2 
=(2cos2u-l)sin2u (fromexample4) ax oxay ay 

Example 6. : If u, be a homogeneous function of degree n, show that : 

. a2u a2u ou 
(1) x - + y - = (n - 1)-

8x2 axay ax 

(") a2
u 8

2
u ( l)ou u x - + y-= n- -

8xay ay2 ay 

(iii) 2 a2
u a2

u 2 8
2
u ( ) x - + y--+x -=n n-1 u 

ax2 axay ay2 

Solution: 

(i) Since u is a homogeneous function of degree n in variable x and y then by 
Euler's theorem, 

ou ou 
x - + y - =nu ... (1) 

ax ay 

Differentiating (1) partially w. r. t. x, we get-



or 

( 
a2

u ou J a2
u ou 

X ox2 +ox· I + y axoy = n ax 

a2u a2u au 
x-+ y-=(n-1)-ax2 oxoy ax 

(ii) Similarly differentiating (I) partially w. r. t. y we get 

82u a2u ou ou 
x-+-+-·l=n-axoy oy 2 oy oy 

or 

(iii) 

Example 7. : If u = 1(Y} show that x ou +you =0 
X ax 0)1 

... (2) 

... (3) 

From (1) 

Solution : Since u is a homogeneous function in x and y of degree I- 1 = 0. So, by 
Euler's theorem, we get, 

and 

ou ou 
x-+ y-=0 

ox oy 

u=f(;) 
: = r(; )(:;) or 

: = r(; )(;) or 

Adding ( 1) and (2), we get, 

ou ou 
, . ;' . _. · X ax+ y 0)1 =0 

x ou = -y r(Y ) ... (1) 
ax X X 

you== y r(Y) ... (2) 
ax X X 

Sol ti • Gi A a, ~1 + A Oz ~l u on . ven u = 1x y 2x y ...... 

Differentiating ( 1) partially with respect to x, we get, 

... (I) 
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Multiplying above by x we get, 

X au= A,a. 1Xa, yflt + A20.2X(ll yP, + ... ax 
Similarly, clifferentiating (1) partially w. r. t. y, we get 

au= A1P,xa, y11,-1 + A2P2x<l1 yP1-I+ ... 
ax 

Multiplying above by y we get, 

au 
Y - = A1P1xa, Y~' + A2P 2Xa1 l 1 + ... ay 

On adding (3) and (4) we get, 

... (2) 

. . . (3) 

X OU+ y au= A1(a.1 +P2)xa, yP1 + A2(a.2 +P2)xal yfli + ... ox ay 

Example 9. : Verify Eltlers Theorem for the following functions: 

(i) f(x, y, z) = axy + byz + czx 

(ii) f(x,y)=x 3 +3x2y+3xy2 
+ y3 

(iii) f(x,y) = x
3 log( ;) 

(iv) f(x,y,z)=3x 2yz+4xy2z+5y4 

Solution :(i) Given f(x,y, z) = axy + byz + czx 

Differentiating (I) partially with respect to x, we get, 

af 
-=ay+cz 

Similarly, 

or 

ox 
of= ax+ bz 
ay 

of =by+cx 
az 

Multiplying (2), (3) and (4) by x, y, z respectively and adding, we get 

... (I) 

... (2) 

... (3) 

... (4) 

...(4) 



x Bf + y Bf + z Bf = axy + czx + axy + byz + byz + czx 
ax oy az 

X Bf + y Bf + z Bf = 2 ( axy + byz + czx) 
ox oy oz or 

x of + Y of + z of = 2 f ax oy oz or 

(ii) Given f(x,y)=x 3 +3x2y+3xy2 + y 2 

Differentiating (1) partially with respect to x, we get, 

of =3x2 +6xy+3y2 
ax 

Similarly, Bf = 3x2 + 6xy + 3 y 2 
oy 

from (1) 

from (1) 

Now, multiplying (2) and (3) by x, y respectively and adding, we get 

X Bf+ y of =3x2y+6xy+3y2 +3x2y+6xy+3y2 
ox oy 

or x Bf + y Bf = 3 (x 3 + 3x 2 y + 3xy2 + y 3) 
ax oy 

x Bf+ y Bf =3f 
ax oy 

or 

(iii) Given f( x, y) = x
3 

log(;) 

Differentiating (1) partially with respect to x, we get, 

! =3x2 log(:)+x3 
(; )x(:;)=3x2 

Bf =3x2 Iog(y)-x2 

Bx X 

Similarly, Bf= x3 -~ x (.!.) 
OJ' y X 

of x2 
-=-
oy y 

... (3) 

... (1) 

. .. (2) 

... (3) 

{from (1)} 

... (1) 

... (2) 

Now, multiplying (2) and (3) respectively by x, and y and adding, we get 
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from (1) 

(iv) Given f(x,y,z)=3x 2yz+4xy2z+5y4 

Differentiating ( l) partially with respect to x, we get, 

aJ =6xyz+4y2z 
ox 

Similarly, 

and 

aJ =3x2 z +8xyz+20y3 

ay 

aJ =3x2 y+ 4xy2 
az 

... (1) 

... (2) 

... (3) 

... (4) 

Now, multiplying (2), (3) and (4) by x, y and z respectively and adding, we get 

xaf +yaf +zaf =6x2yz+4.xy2z+3x2yz+8.xy2z+20y4 

ax ay az 

+3x2 yz + 4.xy 2 z 

or xaf +yaf +zaf =4(3x2yz + 4.xy2z+5y4) 
ax ay az 

or 

=4/ 

x a1 + Y a1 + z aJ == 41 
ax ay Bz 

from (1) 

Example 10.: If u = tan -t (x 3 
+ y 

3 
} show that x ou + y ou == sin2u 

x+y ox 8y 

Solution: Given u = tan-•(x
3 

+ Y
3 

J 
x+ y 

x3 + y3 
tanu== - --

x+ y 

Differentiating above parti,ally w. r_. t. x we get 

sec2 uou == 3x2(x+ y)-(x3 + y3)·1 

ax (x+ y)2 

2 ou 3x3 +3x2y-x3 -y 3 

sec u- = ----=-------'--
ax (x+ y ) 2 

... (1) 



or 
2 ou 2x3 + 3x2 y- y3 

sec u- = - - ---
ox (x+ y )2 

S
:-:1 1 2 ou 2xy2+2y3-x3 
wwar y, sec u- = 

2 oy (x+ y) 

Multitplying (2) and (3) respectively by x and y, and adding we get, 

... (2) 

... (3) 

sec2 u [x ou. you]= x ( 2x3 + 3x2 y- y3) + y (2y3 + 3.xy2 -x3) 

OX O)' ( X + y )2 (x + y )2 

or 2 [ au ou] 2x
4

+3x
3
y-y

3
x+2y

4
+3xy

3
-x

3
y sec u x-+ y- = _ ___ ___;__......._c __ -"-------'-

ox oy (x+ y)2 

- 2x4 +2y4 +2x3 y+2xy3 

- (x+y)2 

2 [x3(x+ y)+ y 3(x+ y)] 
=___;;;-------= 

(x+ y)2 

- 2(t +JI) (x3 + y3) - x3 + y3 

- (x+y)t -(x+y) 

=2tanu (from (1)) 

ou ou 
2 

2 
2 

. 
.'. X - + y- = tan U X COS U = SID UCOS U 

ox oy 

or 
au ou 

2 
. 

x-+ y - = smu 
ox oy 

Example 11.: If u =co•-'(: )+coc'(;) prove that x: + y: =0 

Solution: We have u = co,-'(: )+coc1
(;) 

Differentiating above partially w. r. t. x we get 

ou -1 1 1 ( y) 
OX= ✓1-½ X y + 1- 1 + ½ X - X2 

ou -JI 1 tt ( y J 
ax = .J y2 -X2· X JI+ X2 + y2 X - j! 

... (1) 
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ou 1 y 
- = - ,==== + ---
ax .Jyi -x2 x2 + y2 

. .. (2) 

Sunilarly, : =-R;+ ;, )~I+½ xm 
ry 1 xi 1 

= -;===X----X-
.J y2 _ x2 / · x2 + y2 t 

OU X X 

oy = y.J Yi -xi - x2 + y2 
... (3) 

Multiplying equations (2) and (3) respectively by x and y and adding we get -

xou+you = t + f:J' + t f:J' 
ax oy .J l -tl tl + l .J }'l -tl tl + }'l 

ou ou x-+ y-=0 ax oy 

xy ou ou 
Example 12.: If u = ( )' show that x-+ y- = u x+y ax ay 

Solution : Given u = ( xy ) 
x+y 

Differentiating above partially w. r. t x we get 

ou y(x+y) - lxxy y 2 

ax= (x+ y)2 = (x+ y)2 

ou xy2 
x-=---

ax (x + y)2 
or 

Similar! ou = x ( x + y) - xy 
y,ay (x+y)2 

or 
ou x

2 + f:}l - f:J' x 2 

=----=- --
ay (x+ y)2 (x+ y)2 

ou x2y 
y - = 

ay (x+ y)2 

Adding (2) and (3) we get -

... (1) 

... (2) 

. .. (3) 



ou ou xy2 x2 y 
x-+y-=---+---

ox <7)' ( X + y )2 ( X + y) 2 

_xy(t+y) 
- (x+ y)z 

- xy -u 
-(x+y)-

[from (l)] 

au au 
x-+y-=u ox ay 

Remark : Since u = ( .xy ) is homogeneous of degree 2 -1-1 = 0, therefore, 
x+ y 

OU OU 
x-+ y-=lxu=u 

ox oy 

Example 13.: If u = 1(jy) + y ~ ( -1/xj show that 

(i) xou +you= y~(yl) 
ox ox Ix 

(
'') 2 o2u ")v,, o2

u 2 o2u Q 
1l X -+...,.,J'-+y -= ox2 oxoy ay2 

Solution : Given u = 1(7J) + y~( ½) 
Differentiating (1) partially w. r. t. x, we get 

or 

: = l'(fy)x: + Y~(½}(-;;2) 

x: = ;1'(½)-yx2 ~'(jy) 
Differentiating (1) partially w. r. t. y, we get 

or 

Adding (2) and (3), we get, 

x: + y: = y~(½) 

... (2) 

... (3) 

... (4) 

... (1) 
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This proves result (i) 

Now, differentiating (4) partially w. r. t. x we get 

xa2u +lau + y~=y!p'(yl)(-y/) 
ox2 ox ax&y I x I x2 .. . (5) 

Differentiating (4) partially w. r. t. y, we get 

x; + y~: + :-1; ♦' (½)+ Y♦{½)C½) 

or xy; + y2 ~: + y: ;y♦ (½)+Y/4 +♦'(½) ... (6) 

Adding (5) and (6) we have, 

2 a
2
u a

2
u 2 a

2
u au au (½) X - +2xy-+ y -+X-+ y-=y!p y 

OX2 OXO)' ay2 OX By X 
.. . (7) 

From equation (4) and (7) we get, 

2 a2
u '),...., a2

u 2 a2
u O 

X -+'-""7--+ y - = 
ax2 ox&y · &y2 

This proves (ii) 

Example14.: If u=x"'f(½,)+x"g(½) prove that 

Then u=v+ w ... (1) 

As v = x"' !(7J) is a homogeneous function of x and y of degree m, therefore, by 

a2u a2u a2u 
Euler's theorem we have x2

-
2 

+2.xy-+ y 2
- 2 =m(m-I)v ... (2) 

ox ox&y &y 

( see example 6) 

Also w == x" g ( ½) is a homogeneous function of x and y of degree n, so, we have 

... (3) 

(see solved example 6) 

Adding (2) and (3) we have, 



a2 a2 a2 
x2- 2 +(v+w)+2xy-(v+w)+ i-2 (v+w) ax oxcy cy 

=m(m-I)v+n(n-I)w ... (4) 

Since v and ware homogeneous function ofx and y of degree m and n respectively, 
by Euler's theorem : 

ou ou ow ow 
x-+ y-+x-+ yx-=mv+nw ax cy ax cy 

ou ou 
x-+ y-=mv+nw ax cy 

or from (1) ... (5) 

Again m(m-l)v+n(n-I)w 
2 2 = m v - mv + n w - nw 

=(m2v+n2w)-(mv+nw) 

=m(m + n)v+ n(m +in)w-mn( v + w )-(mv + nw) 

=( m + n-1) (mv + nw)-mnu from (1) 

Substituting these values in ( 4) we get 

2 o2u o2u 2 o2u 
x -

2 
+2xy-+ y -

2 
=(m+n-I)(mv+n~)-mnu ax oxay ay 

Eumple lS.: If u = log( x' ;y') + sin-1 
( ½) prove that x: + y: = O 

then 

Solution : Given u = log( x' ;y' ) + sin-1 
( ½) ... (1) 

Differentiating (1) par.ti.ally w. r. t. x 

ou ty 2x(xy )- y(x
2 

+ i) l (-_½ ) 
- --X ------'---a...+-=--- y 

ox - x2 + y2 xz yz ✓i - ½ x2 

ou x 2y- y3 xy I 
- = --------;===X-
OX xy(x2 + i) .Jx2 - y2 x2 
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ou y(x2 -y2) 
ax= xy(x2 + y2) 

y 

au (x2 - y2) y 
x- = -'---- '- - --;::::==== 

ox x2 + y2 .jx2 - y2 
or ... (2) 

Differentiating (1) partially w. r. t. y, we have, 

ou = xy x (2y(xy )-x(x2 + y2)) + 1 ·(!) 
ax x2 + y2 x2y2 ✓1-YX, X 

au .tJ'(y2x-x3) t 1 
-= + x-
ax (x2 + y2)xl yl ✓x2 _ y2 t 

au .t(y2 -x2) 1 
or - = + 

ax .fy(x2 + y2) ✓x2 _ y2 

or 
au y 2 -x2 y 

y- = 2 2 +-:=== 
O)' X + y ✓x2 _ y2 

Adding (2) and (3) we get, 

ou au x 2 
- y 2 y y2 -x 2 y 

xa:x+Y:+., = - + + 
Vf x2 + y2 .jx2 - y2 x2 + y 2 .Jx2 - y2 

or 

EXERCISE 3.1 

Q. 1. : Verify Euler's theorem for the following functions. 

(i) z =x2 (x2 - y2)3 / (x2 + y2)3 

(iii) z = x 11 sin(y/x) 

.. . (3) 



Q. 2.: If u =sin-t )+ 1an-t }rove that x ! + y: = 0 

Q. 3. : If z is a homogeneous function of x and y of degree n, then show that 

2 o2z o2z 2 a2z x -+2xy-+ y - =n(n-l)z. 
ox2 axOJI OJl2 

If 3 3 3 OU OU OU Q. 4. : u = x + y + z + 3xyz show that x-+ y- + z- = 3u. 
ox OJI az 

Q 5 If . -)( x + y ] h tha ou ou 1 , . : u = Sill ✓x + ✓Y s ow t x ox+ y OJI= tanu. 

Q. 6. : If u = tan-1(x
2 

+ y2) then show that X au+ y OU = !sin2u. 
x+ y ax OJI 2 

Q. 7.: If U=X j Y)+ ~( y) provethat x2 OU +2xy a
2

u + y2 a
2

~ =0. 1 (x X , OX axOJI OJI 

Q. 8. : If u = j y} show that x ou + y ou = O. 1 (x OX OJI 

Q.9.: If u=cos-t(x+ y/ r r..} then show that xou + you +!cotu=O. 
/ .Jx+vY ox OJI 2 

(
3 /4 } ou ou Q.10. :If u = sec-1 x + Y + prove that x- + y - = 2cotu_ 

X y OX OJI 

1.4 TOTAL DIFFER~NTIAL COEFFICIENT 

Let u=f(x.y) ... (1) 

be a function of two variables such that x =~(t) and y ='¥(ti i. e. x and y are 
functions oft. If we substitute these values of x and y in ( 1) we get 

u = f ( ~ ( t ), '¥ ( t)) which may be treated as function of the single variable t, 

then ordinary derivative du , is called total coefficient of u with respect to t. 
dt 

Sometimes, we find it very difficult to express u in term oft alone by eliminating x 

and y. So we are to find du without actually substituting the values of x and y in 
dx 

terms oft in u = f(x,y). 

Let ox, oy and ou be the small increments in x, y and u respectively corresponding to 

small increment in t. 

i.e.x+ox=~(t+ot) or y+oy='¥(t+ot) and u+l>u;;:;f(x+ox,y+oy) 
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Now, from definition 

du . ( u +Bu) - u 
dt = lim61➔0 Bt 

. ( X + ox, y +By)- f( x, y) 
=hm~-Ml------­

Bt 

Adding and subtracting/( x + ox, y) numerator, . 
_ 1 · /( x + ox, y +By)- f( x + ox, y) f( x + ox - y )- f ( x, y) 
- tm6,-MJ ---'-----B-'--t ---'---~ + Bt 

- lim /( X + ox, y +By) - f( X + ox, y) 
- 61--MJ Bt 

l
. /( X + Oy - y )- /( X, Y) 

+ 1ID6t➔O ---'-----'---'---'-- • •• (1) 
Bt 

-lim [f(x+ox, y+By)- f(x+ox,y) By 
- 6'-MJ By . ot 

+ lim /( X + OX - y) - /( X, y) . OX) 
6

'-M) ox ot 

fun By dy nd lim ox _ dx 
·: 6t-MJ - = - a 61--MJ -a, dt a, dt 

Also 6t ➔ 0, ox ➔ 0 and oy ➔ 0 

:. lim
61

-MJ[/(x + ox, y +By)- f(x +ox, y) 
oy 

lim [
f(x+ox, y+oy)- f(x+6x,y) _ 6 /( t:_ ) 

6,,.....0 By - By X + (.U, y 

By definition ( as x + ox remains unchanged while y changes from y to y + oy, i. e. 
x + 6x is treated as constant for this limit) 

lim [ /( x + 6x, y + oy )- f( x + ox, y) _ B f( 6x ) _ Ou 
6,,.....0 Oy - (1J X + , y - (1J 

as ox ➔ 0, and u = J( x, y) 

Similarly, 
lim [f(x+6x, y+oy)- f(x+6x,y) 

6x-Ml 6x 

-lim [f(x+6x, y)- f(x,y) 
- 6x➔O 6x 

a f(x,y) OU 
= ___,;. ____ == - ·: u = f(x,y) 

ox ox 



or 

from ( 1) we have, 

du au dy au dx -=-·-+-+-dt fJy dt ax dt 

du au dx au dy -=-·-+-+-dt ax dt fJy dt 
... (2) 

Ingeneral,ifu=f(x1,x2, ... ,x,i) and x1,x2, . .. ,xn arefunctionoft,then­

du ou dx1 ou dx2 ou dxn -=- ·- +-·-+ - -dt axl dt ax2 dt .. . axn dt 

Remark : If u = f( x, y) is a function of x and y, and tis a function of x, then from the result 

(2) above, the total differential coefficient off with respect to x, is given by 

dj = aJ + af . dy or du =au+ ou. dy .. . (3) 
dx ax fJy dx dx ax fJy dx 

In general if u= f(x1,x2 , .. . ,xn) be function of x1,x2 , ••• ,xn and x2,x3 , . .. ,xn are 
function of x1 alone, the the total differential coefficient of u with respect to x1 , is 
given by-

df af ax dx2 af dx3 Bf dxn 
- =-+-·-+-·-+ ... +-·-
dx ax1 Bx2 dx1 8x3 dx2 Bxn dx1 

or 
du ou ou dx2 au dx3 ou dxn 
- =-+-·-+-·-+ ... +-·-
dx axl mz dx1 ax3 dx1 8xn dx1 

1.4.1 Fint Differential Coefficient of an Implicit Function : 

Let f(x,y) = c., where c as a constant., and yis a function ofx, then from the result (3), 
we have, 

d d 
dx ( C) = dx -(f(x,y )) 

O = Bf . dx + Bf . dy 
ax dx ay dx 

0 =of +aJ_dy 
ax fJy dx 

:,!=-~:=-:/: 
1.4.2 Second Differential Coefficient of an Implicit Function : 

From ... (1) 
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Let, p = -! , q = : and 

Therefore, from (1) we have 

dy P 
-=--
dx q 

-(
dp dq) 

di y = !!_(-pJ = ;f;x q- P;j; 

dx2 dx q q2 

Now, 

dp 8p op dy 
-=-+-·-
dx ox oy dx 

=~(af)+~(af)· dy 
ax ox oy ox dx 

_ a2 J a2 J (dy) --+- · -
ox2 oyox dx 

dp ,2 -sp 
-=--
dx q 

Similarly, 
dq aq aq dy 
-=-+-·-
dx ox oy dx 

dq =_?_(8/J+_?_(8/J· dy 
dx ax oy oy oy dx 

r1q a2 J a2 J dy 
-==-+ - ·-
dx 8xoy oy2 dx 

sq-pt =_.c.._-
q 

Substituting these values in (3) we get 

q(qr-sp) sq- pt 
----'-----'-- p • 

q q 

... (2) 

.. . (3) 

... (4) 

... (5) 



or 

or 

SOLVED EXAMPLES 

Example 1. :If u = x 2 y 2, where x2 + xy + y 2 = l, find du_ 
dx 

Solution : Given u = x 2 y 2 

du ou au dy 
Weknowthat -=-+-·­

dx ax By dx 

Now, from (1), ou =2xy2 
ax 

And, au 2 -=2x y cy2 
Also, x 2 +xy+ y2 = 1 

Differentiating above w. r. t. x we get. 

2x+xdy + y+2ydy =0 
dx dx 

or 
dy 2x+y 
-=-
dx x+2y 

Now from equations (3), (4) and (5), equation (2) becomes-

or 

or 

or 

du =2xy2 +2x2 J 2x+ YJ 
r1x ..rl x+2y 

du 2xy2 
x ( x + 2 y )-2x 2 y ( 2x + y) 

dx = (x+2y) 

du uz -,,z + 4xy3 -4x3 y-2:tz-,,z 

dx = (x+2y) 

du 4xy(y2 -x2) 

dx = (x+2y) 

... (1) 

... (2) 

.. . (3) 

... (4) 

... (5) 

Example 2. :If u = .J x 2 + y 2, and x 2 + y 2 + 3axy = 5a2, find du where x = a, y = a. 
dx 

Solution: Given u = .Jx2 + y 2 

au I 2x 
-=-·--;::::== 
ax 2 .Jx2 + y2 

Differentiation and 
Expansion of Functions 
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du X ou y 
... (1) and - = --;::= = ... (2) 

ay ✓xi + y2 dx - .Jxi + y2 

Now given x2 + y2 + 3axy = 5a2 

Differentiating above w. r. t. x we get, 

. or 

2x+2y: +3ay +3ax: =0 

dy = 2x +3ay 
dx 2y+3ax 

du=ou +ou·By 
dx ox ay ox 

... (3) 

Putting the values ofou, ou and ay from equation (l ), (2) and (3) respectively in (4), 
ox ay ox 

we get-

du x y ( 2x + 3ay J 
dx = .Jxi + y2 + .Jx2 + Yi 2y+3ax 

When x = a, and y = a 

: =,Fi+~( 
1 1 

= ..Ji. - ..Ji. = 0 

du =O 
dx 

Example 3. :Find: if u =sin(xJ + /), where a3x3 + b3 y 3 = cJ . 

Solution: Given u = sin{x3 + /) 

:. : =cos{xJ + y3) x3x2 and : =cos{x3 + /) x3y2 

We also have, a3x3 + b3 y3 = cJ 

Differentiating above w. r. t. x we get 

3a2x2 + 3b3 y 2 dy = 0 
dx 

dy a3x2 
dx =- bJ y2 

du ou ou dy 
- = - +- ·-
dx ox ay dx 

Putting the values of ou, ou and ay in (1 ), we get -
ox ay ox 

.. . (1) 



du ( )x2 
· ( ) dx = 3 b

3 
- a

3 
,lcos x3 + y 3 

Example 4. :Find dy if xY + yx. 
dx 

Solution : Let f(x, y) = x Y + yx 
Then f(x,y) = c which is an implicit function inx andy, 

dy of/ox 
:. dx = - af ;ay 

Differentiating (1) partially w. r. t. x. we get, 

of= yxY--l + yx logy 
ox 

Differentiating (1) partially w. r. t y. we get, 

af = xY logy+ xyx-1 
oy 

Putting these values in (2), we get -

dy [yxY--' + yx logy] 
dx =- xY logy+ xyx-l 

... (1) 

... (2) 

Example S. : Find dy If f(x, y) = O; and ~(y, z) = 0 then show that 
dx 

af~& of~ -·-·-=-·-
oy oz ox ox oy 

Solution: .. f(x,y) =0 
dy of/ox 

.. . (1) . -=---
dx af /oy 

And z - o . dz - o~/oy 
~(y, ) - · · dy - - o~/oz ... (2) 

Multiplying (1) and (2) we get, 

Differentiation and 
Expansion of Functions 
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dy dz aJ/ax a,;ay 
-·-=--x- -
dx dy aJ/ay a,;az 

or 
aJ a, dz dz aJ a, 
-·-·-·-=-x-ay az dx dy ax ay 

Example 6. : Find du If u = x2 
- y2 + sin yz, y = ez and z = log n. 

dx 

Solution: As u is a function ofx, y andz and y andz are functions of x, we have, 
du au dx au dy au dz 
-=-·-+-·-+-·- .. . (1) 
dx ax dx ay dx az dx 

Now, u=x2 
- y2 +sinyz 

Differentiating (2) partially w. r. t. x 
au 
-=2x ax 

Similarly, au =-2y+2cosyz and au= ycosyz ay az 
From and z = logx 

dz 1 
-=-
dx X 

Substituting these values in equation (l)we get, 

du ( ) z l -=2x -2y+ zcosyz e + ycosyz-
dx X 

or : = ;[2x2 +xez ( zcosyz-2y )+ ycosyz] 

... (2) 

Example 7. : If u = f { ( x - z ), ( z -x ), ( x - y)} , then prove that au + au + au = o. ax ay az 

Solution: Given u = J{(x-z), (z-x ),(x- y )} 

Let X = y - z, Y = z - x, and Z = x - y 

Then u = f( x, y, z) 
au au ax au ar au az 

:. -=-·-+-·-+-·-ax ax ax ar ax az ax 
au au ax au ar au dZ 
-=-·-+-·-+-·-ay ax ay ar ay az dy 

au au ax au ar au dZ 
And ---·-+-·-+-·­

& ax oz ar az az dz 

From (1 ), ax = o, ax = L ax = - t 
OX ay oz 

... (1) 

... (2) 

... (3) 

... (4) 



And 

oY =-4 ox 
az =4 ox 

Putting these values in equation (2), (3), and ( 4) we get,· 
ou ou ou ou ou ou 
ox= ax(o)+ oY(-t)+ az(t) = oY + az 

au= au (t) + ou (o) + ou (o) = ou _ ou 
ay oY oY az ax az 

And ou = ou ( - l) + ou ( l) + ou ( 0) = _ ou + ou 
az ax oY az ox ay 

On adding above we get, 
OU OU OU iJ1' iJ1' i)-p ~ iJ1' iJ1' 
-+-+-=--+-+-----+-
ox By oz iJY iJZ iJX lJZ iJX iJY 
OU OU OU 
-+-+-=0 
ox By oz 

du 
Example 8. : If u = x 2 

- y 2 + sinyz, y =fl, z = logx, find -. 
dx 

Solution : Given u = x 2 
- y 2 + sin yz, y = e;,;, z = logx 

du ou ou By ou oz 
:. -=-+-·-+-·- ... (1) 

dx ox oy ox oz ox 

Now, ou =2x 
ox 
ou oy =-2y+2cosyz, oy =i' 

ox 
ou oz 1 - = ycos yz, and - = -
OZ OX X 

Putting these values in equation (1 ), we get, 

du ( ) 1 -=2x+ -2y+zcosyz ex+ycosyzx-
dx X 

or 
du= 2x2 +(2cosyz-2y)xex + ycosyz 

dx X 

Example 9.: If u=f(x2 +2yz, y 2 +2zx, z 2 +xy), prove that 

(y
2 -zx): +{x2 

- yz): + {z2 -xy): =0. 

Solution: Given u = !( x 2 + 2yz, y
2 + 2zx, z 2 + xy) 
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Let X=x2 +2yz, Y=y2 +2zx, Z=z2 +2xy, 
au au ax au ar au az 
---·-+- ·- +-·-ax ax ox ar ox az ox Now, 

au au ax au a r au az 
---·-+-·-+-·-ay ax ay ar ay az ay 
au au ax au ar au az 
-=-·-+-·-+-·-oz ax az ar az az az 

... (1) 

... (2) 

... (3) 

. .. (4) 

From equation (1 ), we have, 

ax ax 
- =2x -=2z ax ' ay ' 
ar =2z ay =2 
ox ' ay Y, 

az =0 az =0 
ax ' ay , 

ax =2y 
oz 
ar =2x 
az 
az =0 
oz 

.. . (5) 

Multiplying equation (2), (3) and (4) by x2 + 2yz, y2 + 2zx, and z2 + 2xy 

respectively and putting the values from equation (5) to the equation (2), (3) and (4) 
and adding, we get, 

(y2-zx)~{x2- yz)~ (z 2-xy)! ={!;(2x)+ :;(2z~ :(o)}{y2-zx) 

+{ au (2z)+ au (2y)+ au (o)}{x2- yz) ax ar az 

+{ au (2y )+ au (2x )+ au (o)}{z2- xy) ax ar az 

=:; {2x{y2-zx) +(2z){y2-zx) +2y(z2-xy)} 

+ :; {2z(y2-zx)+2y{x2- yz)+ix(z2-xy)} 

au 
+­az 
= au {2:t p1-2t:l +lt:l-2,l+ -lyl-2:t ,z}+ au {2t ,z- 2t1:t ax ar 

+2:tl p-lpl f, + 'l#l-2:tt }' 

au au au 
= ax(o)+ ar(o)+ az(o) 

= 0 

{y2 -zx): + {x2 _ yz): + {z2 -xy): =0 



Example 10.: If z = f(x,y ), x = e" + e-v , y = e-11 -ev, then show that 

oz oz oz oz 
- --=x--y-. au &v ax ay 

Solution: Given z = f( x, y ), x = e" + e-v, y = e-11 -ev ... (1) 

We have, 

and 

oz oz ox oz oy 
- --·-+-·-
OU ax au oy au ... (2) 

oz oz ox . oz oy -=-·-+-·- ... (3) &v ox &v oy &v 

az az au az &v -=-·-+-·-ax ouox &v&x 
... (4) 

oz az au oz &v -=-·-+-·-oy au ay &v ay 
.. . (5) 

We also have 

: = e", : = -e-
11 I 

ox= - e-v oy = -ev 
&v ' &v 

Subtracting eqation (3) from eqation (2) we have, 

:-: =:{:-:)+:{:-:) 
From equation (4), (5), (6) and (7), we have 

OZ 0Z OZ ( II V) OZ ( -II y) au-&v =ax · e +e +ay· -e +e 

from (1) 

... (6) 

.. . (7) 

oz_ oz= oz •(x)- oz •(y) 
OU &v ox oy 

From equation ( 1) 

oz Bz oz oz 
or ---=x--y-au &v ax oy 

Example 11.: If z = f(x,y ), when x = uv, and y = !!., then show that 
V 

Solution : Given z = f( x, y ), when x = uv, and y = !!. 
V 
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az az ou az av 
-=-•- +-·- ... (2) 
8y ou 8y av 8y 

Now, 

x=uv and 

fJx 
:. -=v 

ou 
ax 
-=u and 
av 

ou l 
or -=-ax V 

av 1 

u 
y=­

v 

8y l 
-=-
OU V 

ou 
or -=v ay 

ay - u 
-=-
av v 2 

av v2 
or-=--

ay u 

or -=-
fJx u 

Putting these values in equation (I) and (2), we get, 

az l az l az az az v2 az 
-=--+- - and -=v- - -·-
fJx vou uav 8y ou u av 

and 
8z 8z v2 8z 
-=v---·-
ay ou u av 

EXERCISE 4.1 

Q. 1. : Find dy if ax2 + 2hxy + by2 = l (Use partial derivatives.) 
dx 

3 3 du Q. 2.: If u = x logxy where x + y + 3xy = 1 find - -0 
dx 

2 2 2 du Q. 3. : If u = x y where x + xy + y = l find - · 
dx 

Q. 4. : Find : If u = sin{x2 + y 2
) where a2x2 + b2 y 2 = c2 

d 2u d 2u 
Q.5.: 1fu=2(ax+by)2 -{x2 +/)and a2 + b2 =1,findtbevalueof - 2 +-2 . 

dx dy 

1.5 CHANGE OF VARIABLES 

If u = f(x,y )be a function of xandy and x andy are functions of two variables 
t1, t2 , i.e. 

Then we have, 



au au au au 8y 
- =-·-+-·- ( 12 constant) ... (1) 
811 ax 8t1 8y 8t1 

au au au au 8y 
-=-·-+-·- (!1 constant) ... (2) 
8t2 ax Bt2 8y at2 

In case if x = ~ ( t1, 121 and y = 'I' ( 11, t2 ) can be easily expressed as 

11 =f1(x,y) and 12 =fi(x,y) then we have, 

au au a11 au a12 ---·-+- ·-ax 811 ax 812 ax 
and au = au _ 812 + au . 812 

8y 812 8y 812 ay 

SOLVED EXAMPLES 

Example !.: If x = r cos 8, y = rsin8, prove that ( : r + (: r = I 

Solution : If X = rcose, y = rsine, 

:. x2 + y2 = ,2 

On ~ifferentiating (1) partially w. r. t. x, we have, 

2x =2r ar 
ax 

8r X 
or -= -

ax r 

Similarly, 
a, Y 
-=-ay r 

Squaring and adding (2) and (3) we have, 

... (1) 

... (2) 

... (3) 

from (1) 

Differentiation and 
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Example2.: If r = rcos6, y = rsin9 and r2 ==x2 + y 2 prove that 

:; + :; =; { (:)' +(:)'} 
Solution: Given r = rcos9, y = rsin6 and r2 = x 2 + y 2 

• •• (1) 

On differentiating (1) partially w. r. t x, we have, 

Br or y 
2r- = 2x Similarly, - = -

ox oy r 

Br x 
or -=-

ox r 

Br 
l x r --y 

oy 

X 
r --x x 

=--'-r_ 
r2 

and 

or 

... (2) 

y 
r --xy 

r 

Adding (2) and (3) we get, 

or 

or 

We also have, 

or 

or 

B2r ·a 2 r r2 - x 2 r2 - y 2 

ox2 + 0)'2 = r 3 + r 3 

B2r B2r r2 -x2 + r2 
- y 2 2r2 -r2 

- +-=------=- - -
ox2 0)'2 r3 r3 

B2r B2r r2 1 
-+-=-=-
Bx2 oy2 r 3 r 

;[(:J +{:)};{(;)' +(;r} 

;[(:r +(:JJ=;f ?2

} 

;[(:)' +(:J]=; 

.. . (3) 

from (1) 

... (4) 



or ... (5) 

From (4) and (5) we have the proof. 

Examp)e 3.: If 
or ox ox o9 

x = rcos9, y = rsin9 show that - = -· - = r- and find the ox ar' rae ax 

Solution : Given x = rcos0, y = rsin9 then we have 

From equation (1), we have, 

ar x rcos9 
-=-=--ox r r 

or 
ar 
-=cos9 ox 

Further x = ,cos9 

... (1) 

(-: x = rcos9) 

Differentiating above partially w. r. t. r, we have 

ox 
- =cos9 or 

From equation (3) and (4) we have, 

a, ax 

Again, 

-=-ox ar 

x = rcos9 

:. ax = -rsi.n9 
89 

and 

... (2) 

.. . (3) 

.. . (4) 
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from the above equation we have, 

1 ax ae 
-·-=r-
r ae ax 

Further 
ae 
-= 

y 

ax 

a2e o(x2 + y2)-2xy 

ox2 
= (x2 + y2y 

2xy - = __ ..........;. __ ... (1) 

Adding ( 1) and (2), we have, 

or 

a20 a20 2xy 2xy 
-+-=----
ax2 8 y

2 (x2 + y2)2 (x2 + y2) 2 

a20 a20 
:. -2 +-2 =0 ax ay 

Example 4.: If x = rcos0, y = rsin8 and z = /( x, y) prove that 

az az 1az. 
-=-cos0-- -sm8 ox ar r o8 

oz az . 1 az 
- =-sm0-- -cos8 
ay ar ro8 

and 

Solution : Here, z is a function ofx and y where as x and y are functions of rand 0. 
oz az ar az ae ---·-+-·- ... (1) ox or ox ae ax 

oz oz ar az aa 
-=-·-+-·-oy ar ay ae a y ... (2) 



We also have 

We have, 

X = rcose, y = rsine r2 = x2 + y 2 and e =tan-I½ 
Br Br . ae - sine ae cose 
-=cose -=sme -=- - and -=-ax 'ay 'ax r 8y r 

az az I. az az. az I az 
- :;::;cose---sme- ... (3) and -=sme-+-cose- ... (4) ax Br r ae 8y Br r ae 

az. azl az 
- =sme -+-cose­
ay arr ae 

Putting z = rn cosne in above, we get, 

; (r" cosne) = sine :r (rn cosne) + ;cose :e (rn cosne) 

==:' sine~(nrn-l cosne) + !cose~(rn cosne) 
~ r ae 

= nrn-l( cosne •sin9-sinn9 ·COsne) 

.£_(rncosn9) ==nrn-1[sin(9-ne)] ... (5) 
8y -

Now, ~~ (r• cosne) = n ! [,•-1 sin( 8-n8)] = ! [; (,• cosn8)] 

= +ose :, e-1 sin(!-n )e )-su;e :e e-• sin(!-n )e)] from (5) 

Substituting rn-t sin(l-n )e for z in (3) 

= n[ cose(n-1) rn-2 sin(l-n )9- ~
9 

·rn-1(1-n )cos(l-n )9] 

~~ -(r" cosn9) = n (n-1) rn-2[-cos9sin( n-1 )9 + sin9cos( n-1 )9] 

a2 ,·· . . . 
- •(rn cosne) = -n ( n-1) rn-2

[ sin(n-1 )ecos9-cos(n-1 )sin9] 
axay . . . ' ' 

== -n (n-1) rn-2[~n~ 1 )9-9] 

~-(r" cosne) = n ( n-1) rn-2 [sin( n-1 )e] Proved! 
Bx8y 
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Example 5.: If u = J( x, y ), and x = rcose, y = ,sine prove that 

a2u a2u az o2u l OU l a2u 
- +--=-+- -+-- -ax1 8y2 ar a,2 r a, r2 oe2 

Solution : We have, X = rcose, y = rsine 

... (2), e =tan-I½ ... (3) 

Or = X = rcose = cose ... (4), 
ax r r 

a, = y = ,sine = sine 
By r r 

... (5) 

ae 1 111) x 
ay = 1 + (¾)2 V x = x2 + y2 

ae y ae rcose 
-= ox x2 + y2 ay=T 
oe ,sine oe rcose 
-=---ax ,2 ay =? 
ae sine 
-=--ox r 

... (6), 
ae cose 
-=--
By r 

We know that, 

or 

au au o, au ae 
-----+-·-ox a, ox oe ax 

au= au cose + au ( -sine ) 
ox a, oe r 
au au au oe 
-=-cose+-·­ax a, ae ax 

a( u) a( u) sine a( u) 
--=cosex----- -ax a, r ae 

... (8) 

Replacing u by au in the above, ax 
o2

u o (au) a (au) sine a (au) :. ax2 = ax ax =Cose ar ax - - ,-00 ax 

a2
u =cose~(au cos0-sine. au]- sine i.(au cos0- sin0. au) 

OX 2 or or r a e r ae 8, r 00 

Using polar equivalent of au in (8) ox 

=cos0 cose---·- -- -- -sme-+--cose [ 
o2

u sine a ( 1 au]J sine { . au a
2
u 

a,2 r a r r 08 r a, aea, 

.. . (1) 

.. . (7) 



a2u = cos0[cos0 a2u -sine{!. a2u __ 1. ou}] 
or2 or2 r o0or r 2 80 

- sine [-sin0 ou + cos0 °2

u - !(sine 
02

u + ou cose]] 
r or o0or r ae 80 

o
2
u = cos2 0 8

2
u - 2sin0cos0 . o

2
u + sin

2 
0 . o

2
u + sin

2 
0. au 

ox2 or2 r arae r 2 802 r or 

Sinrilarly, 

2cos0sin0 ou 
+----•-

r2 80 

o2
u = cos2 0 o

2
u _ 2sin0cos0 . 8

2
u + cos

2 
0 8

2
u + cos

2 
0 _ ou 

oy
2 or2 r arae r2 & 2 r or 

2cos0sin0 ou 
r 2 80 

.. . (10) 

Adding equation (9) and (10) we get, 

a2u + a2u = I cos2 + sin2 e) a2u + _1(sin20 + cos2). a2u 
or2 oy2 \ or2 r2 802 

1 (. 2 2) ou +- sm 0 +cos •-
r or 

o2u o2u o2u 1 o2u 1 ou 
-+-=-+-·-++-•-
or2 oy2 or2 r 2 802 r or 

Which is required transformed equation. 

... (9) 

Example 6.: If in the above ex.ample (5) if u = ( Ar2 + Br-n )sinn0 then prove that 

o2u 1 82u 1 ou 
-+-·-++---=0 
or2 r 2 802 r or 

Solution: u = ( Arn+ Br-n)sinn0 

OU (A n-1 B -n-1) . O d OU (A n B -n) O :. or = n r + r smn an 
80 

= r + r ncosn 

and ::: = n[ ( n-1) Ar11 + Br-n-Z ( n + 1) ]sinn0 and 

:~ =(Arn +Br-11)n2(-sinn0) 

Differentiation and 
Expansion of Functions 
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0
2
u 1 8

2
u 1 au [ ( l) A n-2 B -n-2 ( )] . e :. -+-·-++-·-=n n- r + r n+l smn 

or2 r 2 002 r Or · 

_ l ::
2 

[(Arn+ B,-n )sinn0 ]+; x n( Arn-l + B,-n- l) x sinn0 

= sinn0 [ n( n- 1) A,n-l + n( n + l)B,-n-l - n2 A,n-l - n2 s,-n-2 

+nArn-i - nB,-n-i] 

= 0 · Proved! 

' ' 

MISCELLANEOUS EXAMPLES 

Example 1. : If u '; log( tanx + tan y + tan z) prove that 

( sin2x) au + ( sin2 y) ou + ( sin2z) ou = 2 
ox &y Bz 

Solution : Given u = log( tanx + tan y + tan z) 

au sec2 
X 

- ------
ox tanx + tany + tanz 

sin2x au= sec
2 

xsin2x 
ox tanx + tan y + tan :z 

or sin2x au = 2 tanx 
ox tanx + tany+ tanz 

Similarly, 
. 

2 
OU 2tany 

sm y-= 
&y tanx + tan y + tan z 

And sin2zou = 2tanz 
oz tanx + tim y + tanz 

Adding (1), (2) and (3) 

.. . (1) 

. .. (2) 

... (3) 

(sin2x) au+ ( sin2y) au+ ( sin2z) OU ~-2 [tan~+ tany + tanz] 
ox &y oz .. tanx + tany + tanz 

Example 2. : If z = XJ1(jy) show that 

(i) X OZ + y OZ = 2z 
ox &y 

=2 



, j y+xdy) 
(ii) If z is constant, then / (y/x) = ~~ dx + y oz = 2z 

f(y/x) { y-x : ) ay 

Solution : Given z = XY.f (½,) ... (1) 

(i) As z is homogeneous function of x and yin degree 2, so from Euler's theorem 
we have 

oz oz 
x-+ y- = 2z This proves (i) ox oy 

(ii) As z is constant, then from ( 1) .xy 1( ¾) is also constant, which may be 

written as q, ( x, y) = c( constant). 

or 

and 

or 

or 

or 

then, 
ay a+fox 
-= 
ox a+/ay 

·: Now +(x,y)=xyi(¾) 

: =yf(½)+xyf{½){-½2) 
: =yf(½)-Y/4 f{½) 
: =xf(½)-.xyf{½)x; 
: =xf(½)+ YI{½) 

dy =- Y f(y/x)-(y2 /x)f'(y/x) 
dx xf(y/x)- y f'(y/x) 

xf(y/x): + yf'(y/x): + yf(y/x)-(y2 /x)f'(y/x) =0 

(x! + y )J(y/x)+ f'(y/x)[1!-:}o 
f'(y/x)[ ( - y: Hxx: + y) f(y/x) 

f '(y/x) ++x:) 
f(y/x) y(y-x:) 

Differentiation and 
Expansion of Functions 
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Example 3. : Verify Euler's theorem for yn ru{ ½) 
Solution : Given u = yn ru{ -%) then u is a homogeneous function of x and y of 

degree n. 

or x: + y: =nynru(½) 
ou Bu 

or x - + y- = nu Thus Eulers theorem is verified ! ox oy 

d2 
Example 4. : If ax 2 + 2hxy + by 2 + 2gx + 2 Jj, + c = 0,. find --f. 

dx 

. .. (1) 

.. . (2) 

Solution: Let qi( x.y) =ax2 + 2hxy + by2 + 2gx + 2Jj, + c = 0, ... {l) 

·: p= aq, =2ax+2hy +2g, q= aq, =2hx +2by+2f 
ox oy 

r = a 
2 
~ = 2a s = a 

2 
~ = 2h t = a 

2 
~ = 2b 

ox2 oxoy , ay2 

We know that, 

[lr - 2pqs + p2t] 

q3 
Putting these values of p, q, r, s and t in equation (2), we get 

.. . (2) 

(2hx + 2by + 2f)22a-2(2ax + 2hy + 2g) (2hx + 2by + 2f) 2h 

+(2ax + 2hy+ 2g)2 2b 

(2hx + 2by + 2f)3 



8(hx + by+ J)2 a-2.(_ax+ hy + g) (hx+ by+ f) h+(ax + hy + g)
2 

h 

- 8(hx+ by+ J)3 

= 

= 

a(h2x 2 + b2 y 2 + / 2 +2bhxy+2bfy+2fhx)-2ah2x 2 -2abhxy-2ajhx 

-2h3xy-2bh2 y 2 -2h2 fy-2gh 2x-2bghy-2jhg+ a2x 2h + h3 
y

2 

+ g 2h + 2h2xy + 2h2gy + 2aghx 

(hx + by+ /)
3 

(h
2

-ab)[ax2 +2hxy+by2 +2gx+2fy ]-a/2 -bg2 +2/gh 

(hx+ by+ /)
3 

-(c)(h2 -ab)-af2 -bg2 +2/gh 
=--------- from (1) 

(hx+ by+ /)
3 

abc+2Jgh-af2 -bg2 -ch2 

=---------
(hx+by+ /)3 

Example 5.: If u =3(lx+ my+ nz) 2 -{x2 + y 2 +n2
) and /2 + m2 + n2 = l 

a2 a2 a2 
Show that -2'.. + -2'.. + ----1'.. = 0 

ax2 
ay

2 az2 

Solution : Given u = 3( Ix+ my+ nz )
2 

-{x2 + y 2 + z2
) 

au a2u 
·: - = 6l(lx +my+ xz )-2x and - = 612 - 2 

fu & 2 

Similarly, 
2 

a u =6m2 -2 and 
ay2 

=6(1-1) 

=0 
COSX SlilX 

Example 6. : If tanu = -- and tanhv = --
sinhy coshy 

au av au av 
Show that-=- and -=-

fu ay ay fu 

S 1 ti Gi 
cosx 

o u on : ven tan u = - ­
sin hy 

Differentiation and 
Expansion of Functions 
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or 

Now, 

or 

2 ou sinx 
·: sec u- = ---

ox sinhy 

ou smx smx 
-=---- -= 
ox sinhysec2 u sinhy(l + tan

2 u) 

-smx sinxsinhy 
-= =------

{ 

2 J sin
2 

h
2
y+cos

2 
x sinh l + cos x 

sinh2 y 

ox 

h sinx . h 
tan v=--=smxsec y 

coshy 

sech2v av= -sinxsechytanhy 
ay 

av= -sinxsechytanhy _ -sinxsechytanhy 
oy sech2v - 1- tanh2v 

= -sinxsechytanhy _ -sinxsinhy 

1-sinh2x/ cosh2 y - cosh2 y-sin2 x 

-sinxsinhy -sinxsinhy ou 

= l+(sin2 hy)-(1-cos2x) = cosh2 y+cos2 x = ox 

OU OU 
-=-oy ox 

au av 
Similarly we can prove - = --oy ox 

EXERCISE 

Q. 1. Verify - =-when/= lo x y x -:;:O, y ,-:;:O. 02 f 02 f { 2 + 2) 
axay Byox xy 

Q. 3. If _!_ = _!_ + f (x - YJ Show that x 2 ou + y2 ou = u2 

U X X)I OX 8y 

.. ·(1) 



Q. 5. If u = zeax+ by above z is a homogeneous function of x and y of degree n. Prove that 

OU OU 
x-+ y -=(ax+by+n)u 

ax . &y 

-½ x-/4 2 0V 02
V Q. 6. If u = A 2 • e - a ' Prove that - = a2 

- . 
ot ox2 

Q. 7. If x = rcos0, y = rsin0, z = f(x,y ), Prove that 

· . if U 02
U o2u o2u 

Q. 8. If x = s cos a -rism8, y = s sma + ricosa, Prove that -
2 

+ -
2 

= -
2 

+ -
2 ox oy os ari 

( ) 
OU OU OU 

Q.9. Ifu=f y - x,x-y Prove that -+-+- =0 
ox oy O'Z 

Q.10. If8 = t"e-r'/4t find what value of x will make --;-.£[,2 88
] = 88

? (Ans. :-3/2) 
r or ov ot 

Q. 11. If u = log(x2 + y2 + z2
) show that 

by ) oz oz 2 Q. 12. If z =eax+ J( ax-by show that b-+ a-= 2ab 
ox oy 

Q. 13. Show that the function u=log!, where r=.J(x-a)
2 

+(y-b)
2 

satisfies the 
r 

Q. 14. If , 2 =x2 + y 2 + z2 and v = ,m show that v .a + v >Y + v rz = m ( m - I) ,m-2
• 

-1 x- y au ou 1 
Q.lS. Ifu=cos r C showtbatx-+y-+-cotu=O 

"I/ X + -.J y OX O)' 2 

Differentiation and 
Expansion of Functions 
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Q.16. If f(x,y)=~+__!_+log;+lo;y showthatx~+Y:.+2f(x,y)=O 
X X)' X + y U.A v_r 

Q.17. If(x½ + y½)cosec2u=x½ + y½, prove that 

2 iiu 02U 2 02U tanu(12 + sec2 u) 
x exi + 2xy exay + Y ayi = 144 

Q.18. If f(x, y) = x2 y 4 sin-1
( ½) is a homogeneous function of degree 6. Hence or 

otherwise find the value of X of + y of. 
ox By 

Q. 19. If v be a function ofr alone, where r 2 = x/ + x~ + ... +x;. Show that 

Q. 20. If u = f(r), show that 
82

~ + 
82

~ = f"(r) + ! f'(r) where r 2 = x2 + y2. 
ox By r 



2 Maxima and Minima 

Chapter Includes: 

1. Introduction 
2. Increasing and decreasing functions 
3. Sign of the derivative 
4. Stationary value of a function 
5. Maximum and minimum values 
6. Local and global maxima and minima 
7. Criteria for maxima and minima 
8. Concavity and Convexity 
9. Conditions for concavity and convexity 
10. Point of inflection 
11. Conditions for point of inflection 
12 Applications of Maxima and Minima 

2.1 INTRODUCTION 

2.1.1 Increasing and Decreasing Functions 

A function y = f(x) is said to be an increasing function of x 
in an interval, say a < x < b, if y increases as x increases. i.e. if 
a< x1 <JS< b. then f(x1 ) < f(J½). 

Maxima and Minima 
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A function y == f(x) is said to be a decreasing function of x 
in an intetval, say a < x < b, if y decreases as x increases. 
i.e. if a < x 1 < x2 < b, then f(x) > f(x

2
). 

2 .1.2. Sign of the derivative 

Let f be an increasing function defined in a closed intetval 
[a,b]. Then for any two values x

1 
and x

2 
in [a, b] with x

1 
< x

2
, 

we have f(x
1

) < f(x
2

) • 

. ·. f(x 1) < f(x2 ) and x
2 

- x
1 

> 0 

~ f(~)-f(JCi)>O 
Xi-Xi -

Lt f(~) - f (JCi) 
Xz~~ JS - JCi > 0, if this limit exists. 

f'(x) > 0 for all x e [a,b]. 

Similarly, if f is decreasing on [a,b] thenf'(x) < 0, if the 
derivative exists. 

The converse holds with the additional condition, that f ~ 
continuous on [a, b ] . 

Note 

Let f be continuous on [ a,b] and has derivative at each point 
of the open interval (a,b), then 

(i) If _f"(x) > 0 for every x E ( a,b), then f is strictly increasing on 
[a,b] 

(ii) Iff'(x) < 0 for every x E (a,b), then f is strictly decreasing 
on [a,b] 

(iii) Iff'(x) = 0 for every x E (a,b), then f is a constant function 
on [a,b] 

(iv) Iff'(x) > 0 for every x E (a,b), then f is increasing on [a,b] 

(v) Iff'(x) :SO for every x E (a,b'). then f is decreasing on [a, b] 

The above results are used to test whether a given function is 
increasing or decreasing. 

2.1.3 Stationary Value of a Function 

A function y = f{x) may neither be an increasing function nor 
be a decreasing function of x at some point of the inteival [a,b] . In 
such a case, y = f{x) is called stationary at that point. At a stationary 
pointf'(x) = 0 and the tangent is parallel to thex - axis. 



Example 1 

If y = x- .!. ~ prove that y is a strictly increasing function 
X 

for all real values of x. (x '#. 0) 

Solution: 

We have y = x - .l 
X 

Differentiating with respect to x, we get 

dy = I +-¼- > 0 for all values of x, except x = 0 
dx X 

y is a strictly increasing function for all real values of x . (x *O) 

Example 2 

If y = t+.L~ show that y ts a strictly decreasing function 
X 

for all real values of x. (x '#. 0) 

Solution: 

We have y = 1 +.!.. 
X 

dy = O _.l.. < 0 for all values of x. (x * 0) 
dx X

1 

.·. y is a strictly decreasing function for all real values of x. 
(x *O) 

Example 3 

Find the ranges of values of x in which 2x3 - 9.x2 + 12x + 4 
is strictly Increasing and strictly decreasing. 

Solution: 

Let Y = 2x3 
- 9X1 + l 2x + 4 

dy = 6.x1 - l 8x + 12 
dx 

= 6(x1 
- 3x + 2) 

= 6(x - 2) (x - 1) 

: > 0 when x < 1 or x > 2 

x lies outside the interval ( 1, 2). 

dy < 0 when 1 < x < 2 
dx 

:. The function is strictly increasing outside the interval [l, 2] 
and strictly decreasing in the interval (1, 2) 

Example 4 

Find the stationary points and the stationary values of 
the function/(x) = r - 3.r -9x + 5. 

Solution : 

Let y = x3 - 3x1 - 9x + 5 

Maxima and Minima 
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dy = 3x2 - 6x - 9 
dx 

A 
. . dy 

t stationary pomts, dx = 0 

: . 3x2 - 6x - 9 = 0 

⇒ x 2 -2x -3 = 0 

⇒ (x + 1) (x - 3) = 0 

The stationary points are obtained when x = -1 and x = 3 

when x = -1, y = (-1)3 - 3(-1)2 - 9(-1) + 5 = 10 

when x = 3, y = (3)3 - 3(3)2 - 9(3) + 5 = -22 

.·. The stationary values are 10 and -22 

The stationary points are (-1, 10) and (3, -22) 

Example 5 

For the cost function C = 2000 + 18()(k - 7 5x2 + r find 
when the total cost (C) is increasbtg and when it is decreasing. 
Also discuss the behaviour of the marginal cost (MC) 

Solution: 

(i) 

(ii) 

(iii) 

Cost function C = 2000 + l 80Ck - 7 5x2 + x3 

~ = 1800 - 150x + 3x2 

dC = 0 ⇒ 1800 - 150x + 3x2 = O 
dx 

⇒ 3x2 - 150x + 1800 = 0 

⇒ x 2 - 5 Ox + 600 = 0 

⇒ (x - 20) (x - 30) = 0 

⇒ X =20 

0 20 

0 < X < 20, ~ > 0 

20 < X < 30, ~ < 0 

dC 
X > 30 ; dx > 0 

or x = 30 

30 

For, 

I (i)x = 10 then c:;; s=600 > O 

(ii)x =25 then dC = -75<0 
dx 

(iii)x = 40 then~ = 600 > 0 

C is increasing for O < x < 20 and for x > 30. 

C is decreasing for 20 < x < 30 

MC = ! (C) 

MC = 1800 - 150x + 3x2 

~(MC) =-150 + & 
dx 



d 
dx (MC)= 0 => 6x = 150 

=> X = 25. 

0 25 

For, 

(i) 0 < x < 25, !(MC)< 0 (i)x =lOthen!(MC)=-90< 0 

(ii) x > 25, ! (MC) >O (ii)x = 30 then! (MC)=30 > 0 

:. MC is decreasing for x < 25 and increasing for x > 25. 

2.1.4 Maxintwn and Minirnwn Values 

Let f be a function defined on [a,b] and c an interior point 
of [a,b] (i.e.) c is in the open interval (a,b). Then 

(i) j{c) is said to be a maximwn or relative maximum of the 
function f atx = c ifthere is a neighbourhood (c-8, c + 8) of 
c such that for all x E (c - 8, c + 8) other than c, j{c) > f{x) 

(ii) j{ c) is said to be a minimwn or relative mininn.un of the :fimction 
fat x = c if there is a neighbourhood ( c - 8, c + 8) of c such 
that for all x E (c - 8, c + 8) other than c, f{c) <j{x). 

(iii) f{c) is said to be an extreme value off or extremwn at c if it 
is either a maximum or minimum. 

2.1.5 Local and Global Maxima and Minima 

Consider the graph (Fig. 2 .1) of the :function y = f{x ). 

y 

X 

Fig. 2.1 

The function y = j{x) has several maximwn and minimwn 

points. At the points V 1 , V 2, .. . V 8 , ! = 0. In fact the fi.mction has 

maxima at Vl, v3, v,, v7 and minima at v;, v4, v6, VB. Note that 
maximum value at V, is less than the minimum value at V

8
• These 

maxima and minima are called local or relative maxima and minima. 
If we consider the part of the curve between A and B then the 
function has absolute maximum or global maxirnwn at V1 and 
absolute minimum or global minimum at ~. 

Maxima and Minima 
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Note 

By the terminology maximwn or minimwn we mean local 
maximum or local minimwn respectively. 

2.1.6. Criteria for Maxima and Minima. 

Maximum Mhrlmum 

Necessary condition dy= 0 
dx 

fix. = 0 
dx 

Sufficient condition 
d d 2y dy = O· d2y >O 2=0 · - < O dx , dx1 dx , dx2 

2.1. 7 Concavity and Convexity 

Consider the graph (Fig. 2.2) of the function y = ft..x). 
Let PT be the tangent to the curve y = f{x) at the point P. 

The curve (or an arc of the curve) which lies above the tangent line 
PT is said to be concave upward or convex downward. 

y 

Fig. 2 .2 
X 

The curve (or an arc of the curve) which lies below the tangent 
line PT (Fig. 2.3) is said to be convex upward or concave downward. 

y 

F ig. 2 .3 X 

2.1.8 Conditions for Concavity and Convexity. 

Letft..x) be twice differentiable. Then the curve y = ft..x) is 

(i) concave upward on any interval if f"(x) > 0 

(ii) convex upward on any interval if f" (x) < 0 

2.1.9 Point of Inflection 

A point on a curve y = f{.x). where the concavity changes 
from upto down or vice versa is called a Point of fuflection. 



.l 
For example, in y = x 3 (Fig. 2.4) has a point of inflection at x = O 

)I 

X 

Fig . 2.4 

2.1.10 Conditions for point of inflection 
A point (c, fi...c)) on a curve y = f(x ) is a point of inflection 

(i) if f"(c) = 0 orf"(c) is not defined and (ii) iff"(x) changes sign 
as x increases through c i.e. f"'(c) * 0 whenf'" (x) exists 

Example6 

Investigate the maxima and minim.a of the function 
2x1 + 3x2-36x+ 10. 

Solution: 

Let y = 2x3 + 3x2 - 3 6x + 10 
Differentiating with respect to x, we get 

dy = 6x2 + 6x - 36 --------(1) 
dx 

dy = O ~ 6x2 + 6x - 36 = 0 
dx 

~ x2+x - 6 = 0 
~ (x + 3) (x - 2) = 0 
~ X = -3, 2 

Again differentiating (1) with respet to x, we get 
d2y 
--=12x + 6 dx2 

d2y 
when x = - 3 --= 12 (- 3) + 6 = -3 0 < 0 • dx:2 

It attains maximum at x = -3 

Maximum value is y = 2(-3)' + 3(-3)2 - 36(-3) + 10 = 91 
d2y 

whenx =2, dx2 = 12(2) + 6 = 30 > 0 

. ·. It attains minimum at x = 2 

:. Minimum value is y = 2(2)1 + 3(2)2 - 36(2) + 10 = -34 

Exaniple 7 

Find the absolute (global) maxhnum and minimum values 
of the function /(x) = 3x5 - 25x3 + 60x + 1 in the Interval 
[-2. 1) 

Maxima and Minima 
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Solution: 

Given fix) = 3x' - 25.x-3 + 60x + 1 

f1(x) = 15x4 - 75x2 + 60 

The necessary condition for maximwn and minimwn is 

f'(x) = 0 

~ 15x4 - 75x2 + 60 = 0 

~ x4 - 5x2 + 4 = 0 

~ x4 - 4x2 - x 2 + 4 = 0 

~ (X2 - 1) (_xl - 4) = 0 

X = ±1, -2, (2~ [-2, 1]) 

f"(x) = 60x3 - 150x 

f"(-2) = 60(-2)3 - 150(-2) = -180 < 0 

. ·. fix) is maximum. 

f"(-1) = 60(-1)3 - 150(-1) = 90 > 0 

. ·. fix) is minimum. 

f"(l) = 60(1)' - 150(1) = -90 < 0 

.·. fix) is maximum. 

The ma:ximwn value when x = -2 is 
fi-2) = 3(-2)5 

- 25(-2)3 + 60(-2) + 1 = -15 

The minimum value when x = -1 is 
fi-1) = 3(-1)5 - 25(-1)3 + 60(-1) + 1 = -37 

The maximwn value when x = 1 is 
fil) = 3(1)' - 25(1)' + 60(1) + l = 39 
.·. Absolute rnaximwn value= 39. 
and Absolute minimwn value =-37 

E:uunple 8 

What is the maxbnum slope of the tangent to the curve 
y = -.t' + 3.x2 +9x - 27 and at what point is it? 

Solution : 

We have y = -x3 + 3x2 +9x - 27 

Differentiating with respect to x, we get 

El:.. = -3x2 + 6x +9 
dx 

Slope of the tangent is -3x2 +6x + 9 
Let M = -3x2 +6x + 9 

Differenating with respect to x, we get 

dM = -6x + 6 ------------( l) 
dx 

Slope is maximum when ~ = 0 and d:x~ < 0 

dM = 0 ~ -6x + 6 = 0 
dx 



⇒ x = 1 

Again differentiating ( 1) with respect to x, we get 

d~¥ = -6 < 0, .-. M is maximwn atx = 1 

Maximwn value of M when x = 1 is 

M = -3(1)2 + 6(1)+9 = 12 

When x = 1 ; y = -(1)3 + 3(1)2 +9(1)-27 = -16 

Maximwn slope = 12 

The required point is ( 1, - 16) 

Example9 
Find the points of tnOection of the curve 
y = 2-t' - 4.r1 + 3. 

Solution : 

We have y = 2x4 - 4x3 + 3 
Differentiate with respect to x • we get 

!!l:.. =8x3-12x2 
dx 
dz 
____E_ = 24x2 - 24x 
dx1 

dzy 
dx2 = 0 ⇒ 24x (x - 1) = 0 

⇒ X = 0, 1 
d3y 
- = 48.x-24 dx3 

d3y 
when x = 0, 1 dx3 ~0-

points of inflection exist. 
when x = 0, y = 2(0)4 - 4(0)3 + 3 = 3 
when x = 1, y = 2(1 )" - 4( 1 Y:~ + 3 = 1 

· The points of inflection are (0, 3) and (1, 1) 

Example 10 
Fhtd the bttervals on which the curve/(x) = .r1~9x--8 

is convex upward and convex downward. 
Solution: 

We have.f{x) = x3 -6x2 + 9x - 8 

Differentiating with respect o x, 
f'(x) = 3x2 - 12x + 9 

f" (x) = 6x - 1 2 

f"(x) = 0 ⇒ 6(x - 2) = 0 : . x = 2 

2 00 
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For 

(i) -00 < X < 2,f"(x) < 0 

(ii) 2 <x < 00, f" (x) > 0 

(i) x = 0 then f" (x) = -12 < O 
(ii)x = 3 thenf'"(x) = 6 > 0 

1) 

.·. The curve is convex upward in the interval (-oo, 2) 

The curve is convex downward in the interval (2, oo) 

Exercise 2.1 

how that the function x3 + 3r + 3\- + 7 
. . . 
1s an increasing 

function for all real values of x. 

2) Prove that 75 - 12x + 6x2 - x3 always decreases as x 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

10) 

11) 

12) 

13) 

14) 

increases. 

Separate the intervals in which the function x3 + &-2 + 5x - 2 
is increasing or decreasing. 

Find the stationary points and the stationary values of the 
functionj{x) = 2x3 + 3x-2 - 12x + 7. 

For the following total revenue functions, find when the total 
revenue (R) is increasing and when it is decreasing. Also 
discuss the behaviour of marginal revenue ~). 
(i) R = ·-90 +6x2 -x3 (ii) R = -105x +6Qx-2 -5x3 

For the following cost functions, find when the total cost (C) 
is increasing and when it is decreasing. Also discuss the 
behaviour of marginal cost (MC). 

(i) C =2000 + 600x - 45x2 + x3 (ii) C = 200 + 40x -1 x2. 

Find the maximum and minimwn values of the function 
(i) x3 - 6x2 + 7 (ii) 2t3 - 15.x-2 + 24x - 15 

(iii) x2 + 12. (iv) x3 - 6x2 + 9x- + 15 
X 

Find the absolute (global) max.imwn and minimwn values of 
the function fix) = 3r - 25x3 + 60x + 15 in the interval 

3 
[- 2,3]. 
Find the points of inflection of the curve y = x4 - 4x3 + a + 3. 

Show that the maximum value of the function 
f(x) = x3 -21x + 108 is 108 more than the minimum value. 

Find the intervals in which the cl.llVe y = x4 - 3..r + 3x-2 + 5x + l 
is convex upward and convex downward. 

Determine the value of output q at which the cost function C 
= q2 - 6q + 120 is minirnwn. 

Find the maximum and minimum values of the function 
x' - 5x4 + Sr - 1. Discuss its nature at x = 0 . 

Show that the function fix) = x2 + 
250 

has a minimum value 
X 

at X = 5. 
2 3 

15) The total revenue (TR.)forcommodity xis 1R= 12x+-; -; . 

Show that at the highest point of average revenue (AR), 
AR = l\1R. (where 1'vfR. = Marginal Revenue). 



2.2 APPLICATION OF MAXIMA AND MINIMA 

The concept of zero slope helps us to determme the maximum 
value of profit functions and the minimum value of cost functions. 
In this section we will analyse the practical application of Maxima 
and Minima in commerce. 

Example 11 

A firm produces x tonnes of output at a total cost 

C = ( 
1 
~ x3-Sx2 + 1 Ox +5). At what level of output will the 

marginal cost and the average variable cost attain their 
respective rninbnllDl? 

Solution : 

Cost C(x) = Rs.( 
1
b x3-5x2 + 1 Ox + 5) 

d 
Marginal Cost = dx (C) 

MC = l~ x 2 
- 1 Ox + 1 O 

. Variable cost 
Average vanable cost = -----­

x 

AVC = ( 1bx2
- 5x + 10) 

(i) Let y= MC= {ox2 
- IOx + 10 

Differentiating with respect to x, we get 

(u) 

: = ; x - 10 

M gina1 . . . h dy O d d:z y 0 
ar cost 1s nnrumum w en dx = an ch! > 

dy = 0 ~ .1. x - 10 = 0 or x = 50 
dx 5 3 

d2 
h 50 y 3 0 MC . . . w en x = 3 , dx2 = 5 > . ·. 1s I11.1.IllJilum. 

M . al . . . . 50 . argm cost attams rts muumwn at x = 3 uruts. 

Letz = AVC = 
1
1
0

x 2 - 5x + IO 

Differentiating with respect to x, we get 

dz = lx- 5 
dx 5 

dz d 2 z 
A VC is minimum when dx = 0, and dx:z > O 

: = 0 ~ 1x - 5 = 0 ~x = 25. 

d 2 z 1 
when x = 2 5, dx:z = 5 > 0 . ·. A VC is minimum atx = 25 units. 

Average variable cost attains minimum at x = 25 units. 
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Example 12 

A certain manufacturing concern has total cost function 
C = 15 + 9x-6x2 +x3. Findx, when the total cost is minimum. 

Solution: 

Cost C = 15 + 9x - 6x2 + x3 

Differentiating with respect to x, we get 

~ = 9 - 12.x + 3x2 

Co . . . hen dC 0 cfC 0 
st is nwumum w dx = and ctr > 

dC = 0 ⇒ 3x2 - 12x + 9 = 0 
dx 

x 2 -4x + 3 = 0 

==> X = 3, X = 1 

Differentiating (1) with respect to x we get 

d 2 C 
dx'l. = -12 + 6x-

----------( 1) 

whenx = 1; 
d 2 C 
dx2 = -12 + 6 = -6 < 0 .·. C :is maximum 

whenx = 3, 
d 1C 
dx2 = -12 + 18 = 6 > 0 .·. C is minimum 

.·. when x = 3, the total cost is minimum 

Example 13 

The relationship between profit P and advertising cost 

x is given by P ::gox -x. Find x which maximises P. 
+x 

Solution: 
4000x 

Profit P = 500 +x x 

Differentiating with respect to x we get 

dP = (500+ x)4000 -(4000x)(l) -l 
dx (500+x)2 

= 2000000 -1 -----------(1) 
(500+x)2 

fi . . h dP d d2P 0 
Pro t 1s max:nnwn w en dx = 0 an ch? < 

dP = 0 ⇒ 2000000 _ 1 = 0 
dx (500+x)2 

⇒ 2000000 = (500 +xY. 

==> 1000 X ✓2 = 500 +x 



500 +x 

X = 914. 

Differentiating (1) with respect to x we get 

d2 P 4000000 
dx2 = - (500+x)3 

.-. when x = 914 ~ '!J < 0 .-. Profit is maximum. 

Example 14 
The total cost and total revenue of a ftrm are given by 

C = x3 - l 2x2 + 48x + 11 and R = 83x - 4x2 - 21. Find the 
output (i) when the revenue is maximum (ii) when profit is 
maxhn.UJJL 

Solution: 

(i) Revenue R = 83x - 4x2 
- 21 

Differentiating with respect to x, 

: = 83 - 8x 

d 2R --= -8 dx2 

d dzR < 0 
an dxz Revenue is maximum when <;J: = 0 

dR 
- = 0 =) 83 - 8x = 0 
dx 

•♦• X = 8i 
d 2R 

Also dx2 = -8 < 0. .-. R is maximum 

Wh th 
83 . . . 

. ·. en e output x = 8 uruts, revenue ts maxnnum 

(u) Profit P = R - C 

= (83x - 4x2 -21) - (x3 
- 12x2 + 48.x + 11) 

= -x3 + &x2 + 3 5x - 3 2 

Differentiating with respect to x, 

: = - 3x2 + 16x + 35 

d 2 P 
dxz = -6x + 16 

Profit is maximwn when : = 0 and '!J < 0 

CZ = 0 => -3x2 + 16x + 3 5 = 0 

=> 3x2 - 16x - 35 = 0 

=> ( 3x + 5) (x - 7) = 0 

-5 => x = - orx = 7 3 
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2

P 6(-5 ) 16 26 0 ... w enx = 3 , dx2 = - 3 + = > .·. P ts mnnmum 

d 2P 
whenx = 7, dx2 = -6(7) + 16 =-26 < 0 .·. Pis maximum 

.·. when x = 7 units, profit is maximum. 

Example 15 

A telephone company has a profit of Rs. 2 per telephone 
when the number of telephones in the exchange is not over 
10,000. The profit per telephone decreases by 0.01 paisa for 
each telephone over 10,000. What is the maximum profit? 

Solution: 

Letx be the number of telephones. 

The decrease in the profit per telephone 

= (x - 10,000) (0.01), X > 10,000. 

= (0.0lx - 100) 

The profit per telephone 

= 200 - (0.0lx - 100) 

= (300 - 0.0 lx) 

The total profit for x telephones 

= x(300 - 0.0 lx) 

= 300x - 0.0lx2 

Let the total profit P = 300x - 0 . 0 lx2 

Differentiating with respect to x, we get 
dP 
dx = 300 - 0.02 X ---------(1) 

Conditions for the maximum profit are 

dP = 0 d d2P < 0 
dx an dx2 

: = 0 => 300 - 0.02x = 0 

300 
=> X = 0.02 = 15,000. 

Differentiating ( 1) with respect to x we get 
d 2P 
dx2 = - 0.02 < 0 :. pis maximum 

when x = 15,000, the maximum profit 

P = (300 x 15,000) - (0.01) x (15,000)2 paise 

= Rs. (45,000 - 22,500) = Rs. 22,500 

Maximum profit is Rs. 22,500. 

Example 16 

The total cost function of a Orm is C = ~ x1--5.r-+-28x +10 
where xis the output. A tax at Rs. 2 per unit of output is 
bnposed and the producer adds It to his cost. If the market 



deIDand function i s given by p = 2 530 - Sx9 w here Rs.pis the 
price per unit of outpu~ find die prollt maximising output and 
price. 

Solution : 

Total Revenue (R) = px 
= (2530 - 5x)x = 253 0x - 5x2 

Total cost after the imposition o:f tax is 

C +2x = l.x3 
- 5x2 + 28x + 10 +2x 

3 

= ~ x 3 
- 5x2 + 3 Ox + 10 

Profit = Revenue - Cost 

= (253<k - 5x2
) - ( ~ x 3 

- 5x2 +30x + 10) 

P = _ !. x 3 + 2500x - 10 
3 

Differentiating P with respect to x, 

: = -x2 + 2 500 ----------(1 ) 

Conditions for maximum profit are 

dP d 2 P 
dx = 0 and dx2 < 0 

dP = 0 =) 2500 - x 2 = 0 dx 
=)x2 = 2500 or x = 500 

Differentiating (1) with respect to x 

d 2P 
dxi = -2x 

d 2 P When x = 50, axz = -50 < 0 .·. Pis maximwn 

. ·. Profit maximising output is 50 wtits 

When x = 50, price p = 2530 - (5 x 50) 
= 2530 - 250 = Rs. 2280 

2.2.1 Inventory Control 
Inventory is defined as the stock of goods. In practice raw 

materials are stored upto a capacity for smooth and efficient running 
of business. 

2.2.2 Costs Involved in btventory Problems 

(i) Holding cost or storage cost or inventory carrying 
cost. (C 

1
) 

The cost associated with carrying or holding the goods in stock 
is known as holding cost per unit per unit time. 

(ii) Shortage cost (CJ 
The penalty costs that. are incurred as a result of running out 
of stock are known as shortage cost. 
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(iii) Set up cost or ordering cost or procurement cost : (CJ 

1bis is the cost incurred with the placement of order or with 
the initial preparation of production facility such as resetting 
the equipment for production. 

2.2.3 Economic Order Quantity (EOQ) 
Economic order quantity is that size of order which minimises 

total annual cost of carrying inventory and the cost of ordering under 
the assumed conditions of certainty with the annual demands known. 
Economic order quantity is also called Economic lot size formula. 

2.2.4 Wilson's Economic Order Quantity Formula 
The formula is to determine the optimwn quantity ordered 

( or produced) and the optimum intetval between successive orders, 
if the demand is known and uniform with no shortages. 

Let us have the following assumptions. 

(i) Let R be the uniform demand per unit time. 

(ii) Supply or production ofitems to the inventory is instantaneous. 

(iii) Holding cost is Rs. C
1 

per unit per writ time. 

(iv) Let there be n orders (cycles) per year, each time q units 
are ordered (produced). 

(v) Let Rs C
3 

be the ordering (set up) cost per order (cycle). 
Let t be the time taken between each order. 

Diagramatic representation of this model is given below : 

y 

0 X 

Fig. 2 .5 

If a production run is made at inteivals t, a quantity q = Rt 
must be produced in each run. Since the stock in small time dt 
ii Rt dt, the stock in period t is 

t 1 f Rt dt - 2 Rt2 

0 
1 
2 qt ( <E Rt = q) 

= Area of the inventory triangle OAP (Fig. 4 .5). 

Cost of holding inventory per production run = ~ C 1 Rt2
• 

Set up cost per production run 

Total cost per production run 

= c3. 
= .!c Rt2 + c 2 1 3 



Average total cost per unit time 

1 CJ 
C(t) = 2 c 1 Rt+ 1 ---------( 1) 

C(t) is minimum if :t C(t) = 0 and :t: C(t) > 0 

Differentiating ( 1) with respect to t we get 

d 1 CJ 
dt C(t) = 2 c 1 R - t2 ------·--(2) 

==> .l C R _ _s = O 
2 t2 

r = ,12cJ 
==> ClR 

Differentiating (2) with respect to t, we get 

dz 2CJ ~ 
dtz C(t) = ---,;- > 0, when t = 'V "'c';R 

Thus C(t) is rninimwn for optimum time interval 

t = ,12cJ 
0 ClR 

Optimum quantity % to be produced during each production run,, 

EOQ = % = Rt0 = ~ 
1lris is known as the Optimal Lot - size formula due to Wilson. 

Note : (i) Optimum number of orders per year 

n = demand _ R rs.-_ .JRC1, _ ..!.. 
o EOQ - 'Ju;R - 2C

3 
- t

0 

(ii) Minimum average cost per unit time, C
0 

= ..J2c1C3 R 

(iii) Carrying cost= ~ x C 1, Ordering cost= ! x C 3 

(iv) At EOQ, Ordering cost = Carrying cost. 

Example 17 

A manufacturer has to supply 12,000 units of a product 
per year to his customer. The demand is fixed .and known 
and no shortages are allowed. The Inventory holding cost is 
20 paise per unit per month and the set up cost per nm is 
Rs.350. Determine (i) the optimum nm size q, (Ii) optimum 
scheduling period t 0 (iii) minimum total variable yearly cost. 

Solution : 

Supply rate R = 12
iiOO = 1,000 units / month. 

C 
1 

= 20 paise per unit per month 
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(i) 

c 3 = Rs. 350 per run. 

= ✓2C3R = /ix350xl000 
Cl -v 0 .20 

= 1,870 units / nm. 

= ✓2CJ - 2x 350 56 da 
C 1R 0.20 x 1000 = ys 

(iii) C 0 = .J2c 1C 3R - ,J2 x 0.20xl2x350x(lOOOx12) 

= Rs. 4.4~0 per year. 

Example 18 

A company uses annually 24,000 units of raw materials 
which costs Rs. 1.25 per unit, placing each order costs Rs. 
22.50 and the holding cost is 5.4% per year of the average 
inventory. Find the H)Q, time between each order, total 
number of orders per year. Also verify that at EX:>Q 
carrying cost is equal to ordering cost 

Solution: 

Requirement = 24,000 units / year 

Ordering Cost (C3) = Rs.22.50 

Holding cost (C) = 5.4% of the value of each unit. 

{2Rc; 
EOQ =v~ 

= i66 X 1,25 

= Re.0.0 675 per unit per year. 

= f 2 X 2400 X 22. 5 = 4 000 units 
'V 0.0675 . 

T . b h d ·_ - qo - 4000 - 1 une etween eac or er - t 
O 

- R -
24000 

- 6 year 

Number of order per year = ~ = 
2
~ = 6 

AtEOQ carrying cost = ~0 x C
1 

= ~O x0.0675 = Rs.135 

R 24000 _ Ordering cost = - x C = 
4000 

x 22.50 - Rs.135 
qo 3 

Example 19 

A manufacturing company purchases 9000 parts of a 
machine for its annual requiremen ts. Each part costs Rs.20. 
The ordering cost per order is Rs.15 and carrying charges 
are 15% of the average inventory per year. 

Find (i) economic order quantity 

(ii) time between each order 

(iii) mJnimurn average cost 

http:Rs.22.50


Solution : 
Requirement R = 9000 parts per year 

cl = } 5% unit COSt 

_ 15 _ 
-

100 
x 20 - Rs.3 each part per year_ 

C 3 = Rs. 15 per order 

EOQ =.J2C3R = /2x15 x9000 
cl V 3 

= 300 Wlits. 

t0 = ~ = ~~ = 3~ year 

-
3
3
6t = 12 days (approximately). 

Minimum Average cost= ,J2clc3R 

= .J2x3x15x9000 = Rs.900 

EXERCISE2.2 

1) A certain manufacturing concern has the total cost function 

C = ~ x2 - 6x + 100. Find when the total cost is minimum. 

2) A firm produces an output of x tons of a certain product at a 

total cost given by C = 300x - 1 Ox2 + ! x3 . Find the output at 
which the average cost is least and the corresponding value of 
the aveage cost. 

3) The cost function, when the output is x , is given by 

C = x (2.eX +e 'X). Show that the minimum average cost is 2✓2. 

4) A :rum produces x tons of a valuable metal per month at a 

total cost C given by C = Rs.(! x3- 5x2 + 75x + 10). Find at 
what level of output,, the marginal cost attains its minimum. 

5) A :rum produces x units of output per week at a total cost of 

Rs. (; x3 -x2 + ~ + 3). Find the level at which the marginal 
cost and the average variable cost attain their respective 
minimum. 

6) It is known that in a mill the number of labourers x and the 

7) 

3 3 total cost C are related by C = 2(x _ 4) + 
32 

x. What value 

of x will minimise the cost? 
3 

R = 21.x - x2 and C = -=- -3x2 + 9Jc' + 16 are respectively the 
3 

sales revenue and cost function of x units sold. 

Find (i) At what output the revenue is maximum? What is 
the total revenue at this point? 
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8) 

9) 

10) 

11) 

12) 

13) 

14) 

(ii) What is the marginal cost at a minimwn? 

(iii) What output will maximise the profit? 

A firm has revenue function R = &- and a production cost 

function C = 150000 + 60( ~ J . Find the total profit function 

and the number of mtits to be sold to get the maximwn profit. 

A radio manufacturer finds that he can sell x radios per week 

at Rs p eac~ where p = 2( 10~: ). His cost of production 
2 

of x radios per week is Rs. (120x+ 2 ). Show that his profit 

is maximum when the production is 40 radios per week. Find 
also his maximwn profit per week. 

A manufacturer can sell x items per week at a price of 
p = 600 -4x rupees. Production cost of x items works out to 
Rs . C where C = 40x + 2000. How much production will 
yield maximwn profit? 

Find the optimum output of a .firm whose total revenue and 
total cost functions are given by R = 30x -:x:2 and C = 20 +4x, x 
being the output of the :firm. 

Find EOQ for the data given below. Also verify th.at carrying 
costs is equal to ordering costs at EOQ. 

Item Monthly Ordering cost Carrying cost 
Requirements per order Per unit. 

A 9000 Rs . 200 Rs. 3 .60 

B 25000 Rs.648 Rs. 10.00 

C 8000 Rs. 100 Rs. 0 .60 

Calculate the EOQ in units and total variable cost for the 
following items, asswning an ordering cost ofR.s.5 and a holding 
cost of 10% 

Item Annual demand Unit price (Rs.) 

A 460 Units 1.00 

B 392 Units 8.60 

C 800 Units 0.02 

D 1500 Units 0 .52 

A manufacturer has to supply his customer with 600 units of 
his products per year. Shortages are not allowed and storage 
cost amounts to 60 paise per unit per year. Whert the set up 
cost is Rs. 80 find, 

(i) the economic order quantity. 

(ii) the minimum average yearly cost 

(iii) the optimum nwnber of orders per year 

(iv) the optimum period of supply per optimum order. 



15) The annual demand for an item is 3200 units. The unit cost is 
Rs.6 and inventory carrying charges 25% per annum. If the 
cost of one procurement is Rs.150, determine (i) Economic 
order quantity. (ii) Time between two consecutive orders 
(iii) Number of orders per year (iv) minimwn average yearly cost. 

2.3 PARTIAL DERIVATIVES 

In differential calculus, so far we have discussed functions of 
one variable of the form y = f{x). Further one variable may be 
expressed as a function of several variables. For example, 
production may be treated as a function of labour and capital and 
price may be a :function of supply and demand. In general, the cost 
or profit depends upon a number of independent variables, for 
example, prices of raw materials, wages on labour, market 
conditions and so on. Thus a dependent variable y depends 
on a number of independent variables x

1
, x 2 , X

3 
.. xn. It is 

denoted by y = f(x
1

, x
2

, x 3 .. xn) and is called a fimction of n 
variables. In this section, we will restrict the study to functions of 
two or three variables and their derivatives only. 

2.3.1. Definition 

Let u = f{x, y) be a function of two independent variables x 
and y. The derivative of f{x, y) with respect to x, keeping y 
constant, is called partial derivative of u with respect to x and is 

denoted by t or rx or h or u%. Similarly we can define partial 

derivative of f with respect to y. 

Thus we have 

<!f Lt = :f{x+ ~, y) - f(x, y) 
dX - 6.x➔O ~ 

provided the limit exists. 

(Here y is fixed and ~ is the increment of x) 

i).[ Lt :f{x,y+ ~y) - f(x, y) 
Also oy = ~y.-o = ~y 

provided the limit exists. 

(Here x is fixed and ~y is the increment of y). 

2.3.2 Successive Partial Derivatives. 

The partial derivatives t and ~§ are in general ftmctions 

of x and y. So we can differentiate functions ~~ and t partially 

with respect to x and y. These derivatives are called second 
order partial derivatives of f{x, y). Second order partial derivatives 
are denoted 
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Note 

If f, f, , f.y are continuous then f:xy= f, 
X . ~ 

2.3.3 Homogeneous Function 
A function f(x, y) of two independent variable x and y 

is said to be homogeneous in x and y of degree n if 
f(tx , ty)=t 0 f(x, y) fort > 0. 

2.3.4 Euler's Theorem on Homogeneous Function 

Theorem :. Let f be a homogeneous :function in x and y of 
degree n, then ,-.... 

X fx +Yi= n f 

Corrollary: In general iff(x
1

, x
2

, x
3 
... ~) is a homogeneous function 

of degree n in variables xl' x 2, X
3 

.• .xm, then, 

df df iJf df _ 
Xl-._- +X2-S-- +X3-a + ··• +Xm-S- - nf 

~l v~ ~ ~m 

Example 20 

It u(x, y) = 1000 -x3 - y2 + 4t'y6 + ~, find each of the 
following. 

(i) du (ii) itu (iii) a2u (Iv) a2u (v) a2u (vi) a2u 
ax ay ax2 iJy2 . axay dydx 

Solution: 

u(x, y) = 1000 - x 3 
- y + 4x3Y + 8y 

(i) g: = lx (1000-x3 -y + 4x3y + 8y) 

= 0 - 3x2 - 0 + 4 (3x2 )y5 + 0 

= -3x2 + 12x2y6 . 

(ii) ~; = gy (1000 - x 3 - y2 + 4x3y5 + 8y) 

= 0 - 0 - 2y + 4x3(6y5) + 8 

= - 2y + 24x3y5 + 8 

(iii) 



= Sx (-3xz + 12x2y) 

= -6x +12(2x)y6 

= -6x + 24xy6 · 

(iv) :;~ = :Y (~;) 
a 

= i)y (-2y + 24x3y + 8) 

= -2 + 24x3(5_y") + 0 

=-2 + 120x3y4 

a2u _ a (au) 
(v) axay - ax ay 

= lx (-2y + 24x3y5 + 8) 

= 0 + 24(3x2)y + 0 

= 72x2y. 

(vi) a2u a (au) 
ayax = dy dX 

a 
= ay (-3x2 + 12x2y) 

= 0 + l2x2(6y) = 72x2y 

Example 21 
If ftx, y) = 3x2 + 4yl + 6xy - x 2y 3 + 5 find (i) fx(l, -1) 

(ii) .t;,(1, 1) (ili).f.,(2, 1) 
Solution: 

(i) 

(ii) 

ft..x, y) = .3x2 + 4y + 6.xy -x2y + 5 

fx = ! (/) = lx (3x2 + 4y + 6xy -x2y + 5) 

= 6x + 0 + 6( 1 )y - ( 2x )y3 + 0 

= 6x + 6y - 2xy3. 

fx(l, -1) = 6(1) + 6(-1) - 2(1)(-1)3 = 2 

a a 
~ = ay (j) = vy (3x2 + 4y + 6.xy -x2y + 5) 

= 12y2 + 6x - 3x2y2 

fyy = :y (:~) 
a = ay (12y2 + 6x - 3x2y2) 

= 24y-6x2y 

.·. fyy(l, 1) = 18 
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(tii) f, = ..!_ (~) = _g__ (12y2 + 6x- 3x2y) xy ax oy ax 

= 6-6xy2 

fxy(2, 1) = -6 

Example 22 

If u = log.J x 2 + y 2 + z 2 , then prove that 

a2 u a2u a2 u 1 -+-2+--ax2 O)' az2 - X
2 + y 2 + z 2 

Solution: 

We have u = 1.10g (x2 + y2 + z2 ) 
2 

Differentiating (1) partially with respect to x, 

3u 1 2x 
dX = 2 x2 + y2 + z2 = x2 + yz + z2 

= :x (::) 

-----------( 1) 

a ( ) (x
2
+y

2
+z

2
Xl)-x(2x) 

= Tx x2 + ;2; z2 = (x2 + y2 + z2 )2 

x2 + y2 + i1' _ 2xz -x2 + y2 + z2 
= (x2+y2+z2)2 - (x2+y2+z2)2 

Differentiating ( 1) partially with respect to y we get, 

dU X 

dy = x2 + Y2 + 2 2 

azu (x2 + y2 + z2)(1)- y(2y) = - y2 + i2 + x2 

ayz - (x2 + y2 + z2)2 (x2 + y2 + 2 2yi 

Differentiating ( 1) partially with respect to z we get, 

iJu = z 
dz x2 + y2 + z2 

i:') 2 u (X2 + y 2 + 2
2)(1)- z(2z) -z2 +X2 + y 2 

azz - (x2 + y2 +z2)2 = (x2 + y2 + z2)2 

d2 u d2 u d 2 u -x2 + Y +z2 - y +z2+x2 -i2 +x2+ Y 
ax2 + ay2 + az2 = cx2 + Y2 +i1')2 

x2+y2+z2 1 
= = (x2 + yz + z2)2 x2 + y2 + z2 

Example 23 
Verify Euler's theorem for the function 
u(x,y) =x3 + y> +x2y. 

Solution: 

We have u(x, y) = x 3 _+ y + x 2y ---------(1) 

u(tx, ty)= t 3x 3 + t3y + t2 x2 (ty) 



u is a homogeneous :function of degree 3 in x and y. 

We have to verifythatx g~ +y ~ = 3u. 

Differentiating (1) partially with respect to x, we get 

i)u = 3X2 + 2xy 
ax . 

• •• X . g~ = 3x3 + 2x2y 

Differentiating (1) partially with respect to y. we get 
i)u 
ay = 3y2 + x2 

au 
Y ay = 3y + x2y 

au au 
.·. x ax + Ydy = 3x3 + 2x2y + 3y3 + x2y 

= 3(x3 +x2y + y3) = 3u 

Thus Euler'i; Theorem is verified, for the given :function 

Example 24 

x" + y" 
Using Euler's tlieorem if u = log-------­x-y 

a,, au 
show thatx~ + y~ =3. 

Solution: 
x4 + y4 

u =log ---­x-y 
x4+ y4 

==> eu = -------x - y 
1bis is a homogeneous :function of degree 3 in x and y 

By Euler's theorem, 

X Ix (eu) + y :y (eu) = 3e'1 

i)u au 
X eu - + ye0 ~ = 3e0 

ax oy 

dividing by eu we get x au + y du = 3 di" iJy 

Example 25 
Without using Euler's theorem prove that 

x~+ y¼ + z-t = 4u, if u = 3x2yz + 4xy2z + Sy' 

Solution: 

We have u = 3x2yz + 4xy2z + 5y4 --------(1) 

Differentiating partially with respect to x, we get 

~~ = 3(2x)yz + 4(l)y1z + 0 
= 6xyz + 4y2z 
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Differentiating (1) partially with respect to y, we get 
au 
ay = 3x2(l)z + 4x(2y)z + 20y 

= 3x2z + &xyz + 20y 

Differentiating (1) partially with respect to z, we get 

g~ = 3x2y(l) + 4x;y2 (l) + 0 

= 3x2y + 4xy2 

xau + ydu +zdu ax dy az 
= 6x2yz + 4xy 2z + 3x2yz + &xy2z' + 20y4 + 3x2 yz + 4xy2z 

= l 2x2yz + l 6xy2z + 20y4 

= 4 (3x2yz + 4xy2 z+ 5y4) = 4u. 

Example 26 

The revenue derived from selling x calculators and y 
adding machines is given by R(x,y) = -x2+8.x-2y2+6y+2xy+ 50. 
If 4 calculators and 3 adding machines are sold, find the 
marginal revenue of selling (i) one more calculator (ii) one 
more adding machine. 

Solution : 

(i) Toe marginal revenue of selling one more calculator is 1\.-
D = ~(R) = ~(-x 2 + &x - 2y2 + 6y + 2xy + 50) ... '),; ax ax 

= -2x + 8 - 0 + 0 + 2( 1 )(y) 

Rx(4, 3) = -2(4) + 8 + 2(3) = 6 

:. At (4, 3), revenue is increasing at the rate of Rs.6 per 
caculator sold. 

:. Marginal revenue is~- 6 . 

(ii) Marginal Revenue of selling one more adding machine is 1\, 
R = !. (R) = .£..(-x 2 + &x - 2y2 + 6y + 2xy + 50) 

'I uy d);:' 
= 0 + 0 - 4 y + 6 + 2x( I) 
= - 4y+ 6 + 2x 

~(4, 3) = -4(3) + 6 + 2(4) = , 2 

Thus at ( 4 , 3) revenue is increasing at the rate of 
approximately Rs.2 per adding machine. 

Hence Marginal revenue is Rs. 2. 

EXERCISE 2.3 

, ,2 au au 1) lfu = 4x-2 -3y + 6xy, find ax and ay . 

2) 

3) 

_ _') • ,3 -3 au au au 
If u = x- + y + ~ -3xy z, prove thatx ax +y ay + z az = 3u 

If z = 4.x6 - 8x3 - 7 x + (ixy + Sy + x3y', find each of the follwoing 

(. du ("" au (""") d
2

z (") a
2
z () a2

z ( ") a2
z 

1) ax u) ay w ax2 lV ay 2 V "axay Vl dy dx 



4) 

5) 

6) 

7) 

8) 

9) 

10) 

11) 

12) 

13) 

If f(x, y) = 4x.-2 - Sy+ 6ry2 

following. 

(i)fx 

(v)f'JCX 

(ix) fxy 

(ii) fx(2, 1) 

(vi) f ,:/2, 1) 

(x) fxy(2, 3) 

+ 4t- + ~ + 9, evaluate the 

(iii)_[y (iv)fyC0, 2) 

(vii)J: (viii)J: (1, 0) yy yy 

(xi) f yx(2, 3) 

If u = x2y + y2z + z2x, show that g~ + g~ + t = (x + y + z)2. 

If u = log.Jx2 + y', show that ( ~~ J +( ~~ )2 

= ·x2 ~ y2 

2 a2 u a2 u 
If u = x3 + 3xy + y, prove that axay = dydx 
~ 

f r2-l' · dz dz 
I e = X -y, prove thaty ax +x dy = x2 -y2. 

a2 - a2 
Verify that f;i; = ifx for the function u = xy + sinxy. 

. .o... 2 a2 
If U = log (x2 + y 2 + z2) prove that X dydz = Y izax = z axay 

Verify Euler's theorem for each of the following functions. 

(i) u = L 
X 

. x-y 
(iii)z = -­

x+ y 

(ii) f = x+ + y+ -3x'° y" 

1 
(iv) u = Jx2 + y2 

(v) u = x: + y: (vi) u = x log (LJ 
X +y X 

Use Euler's theorem to prove the following 
2 2 
~ OU au 

(i)Ifu= ✓x+y then prove that xa; +yry= 

(ii) If z = ~ +y-3 then prove thatx: + y ~; = 3z logz 

(
x

2 
+ y

2
) ar ar 

(iii) If f = log X + y then show that X ax + y dy = I 

(
x2 + y2) (iv) If u = tan·1 ----'-- then prove that 
x-y 

du au 1 . 
X OX + y oy = 2 Stn 2u. 

Without using Euler's theorem prove the following 

(i) If u = 2::. + .£ + yx , then prove that 
Z X 

<tu Ao, au 
x-+y~+z-0 = O ax dy z 

2 2 a 
(ii) If u = logx x: t , then prove thatx a~ + y g~ = 1 

14) The cost of producing x washers and y dryers is given 
by C(x, y) = 40.x + 200y + l0xy + 500. Presently, 50 washers 
and 90 dryers are being produced. Find the marginal cost of 
producing (i) one more washer (ii) one more dryer. 
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15) The revenue derived from selling x pens and y note books is 
given by R(x,y) = 2x2 + ;r + 4x + 5y + 800 

At present, the retailer is selling 30 pens and 50 notebooks. 
Which of these two product lines should be expanded in order 
to yield the greater increase in revenue? 

16) The annual, profit of a certain hotel is given by 
P(x, y) = l0Qx-2 + ¥ + a + ~ + 10000. Where x is the 
number of rooms available for rent and y is the monthly 
advertising expenditures. Presently, the hotel has 90 rooms 
available and is spending Rs.1000 per month on advertising. 

(i) If an additional room is constructed, how will this affect 
annual profit? 

(ii) If an additional rupee is spent on monthly ·advertising 
expenditures, how will this affect annual profit? 

2.4 APPLICATIONS OF PARTIAL DERIVATIVES 

In this section we learn how the concept of partial derivatives 
are used in the field of Commerce and Economics. 

2.4.1 Production Function 
Production P of a firm depends upon several economic 

factors like investment or capital (K), labour (L), raw material (R), 
etc. Thus P = f (K, L , R, . .. ). If P depends only on labour (L) and 
capital (K), then we write P = ftL, K). 

2.4.2 Marginal Productivities 
Let P = ftL, K) represent a production function of two 

variables L and K. 

!~ is called the 'Marginal Productivity of Labour' and :: 

is the 'Marginal Productivity of Capital ' . 

2.4.3 Partial Elasticities of Demand 

Let q1 = /{pl' p,J be the demand for commodity A which 
depends upon the prices p 1 and p

2 
of commodities A and B 

respectively. 

1he partial elasticity of demand q 1 with respect to p 1 is defined as 

P1 d<I1 Eql 
- % df>1 = EA 

Similarly the partial elasticity of demand of q 1 with respect to 

price p
2 

is - A . dq1 - Eq1 
ql dp2 - Ep2 

Example 27 

Find the marginal productivities of capital (K) and 
labour (L), if P = 10K - K 2 + KL, when K = 2 and L = 6 

Solution: 

We have P = IOK- K 2 + KL -----------(1) 



Toe marginal productivity of c~ital is ;; 

.·. Differentiating (1) partially with respect to K we get 

aP oK = 10 - 2K + (1) L 

= 10-2K + L 
<)p 

when K =2, and L = 6, aK = 10 - 2(2) + .6 = 12 

Toe marginal productitivy of labour is ;~ 

:. Differentiating (1) partially with respect to L we get 

oP =K 
oL ap 

when K = 2, and L = 6 aL = _2 . 

. ·. Marginal productivity of capital = 12 units 

. ·. Marginal productivity of labour = 2 units 

Example 28 

For some~ the number of units produc.ed when usblg 
x units of labour and y units of capital is given by the 

..1 ..1 
production functionJtx, y) = 80 x• y • . Find (i) the equatiom 

for both marginal productivities. (ii) Evaluate and interpret 
the r~sults when 625 units of labour and 81 units of capital 
are used. 

Solution : 
.J. .l. 

Given.fix, y) = 80 x• y'' ----------( 1) 

Marginal producitivity of labour isfx<x, y). 

: . Differentiating (1) partially with respect to x, we get 

1 --1.. 2. ..l 1. fx = 80 4x 4y4 =20x-4y4 

Marginal productivity of capital isf;,(x, y) 

:. Differentiating (1) partially with resepect to y we get 

1(3111 1 1 1 t; = 80 x"i 4 Y 4° = 60x".i y • 

(ii) !;_(625, 81) = 20(625)-¾(81)¾ 

= 20 ( 1~5) (27) = 4.32 

i.e. when 625 units of labour and 81 units of capital are used, one 
more unit of labour results in 4.32 more units of production . 

.J. .J. 
f,,(625, 81) = 60 (625)4(8lt4 
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= 60(5{ ! ) = 100 

(i.e.) when 625 Wlits of labour and 81 units of capital are used, 
one more Wlit of capital results in 100 more units of production. 

Example 29 

The demand fora commodity A is q 1 =240-p\+6p2-p1 p
2

• 

F . d th rtial Ul-...4-: • • F:,ql d Eql h 5 d m e pa ~ucities Fp
1 

an Fp
2 

w enp1 = an p 2 =4. 

Solution : 

(i) 

(ii) 

Given q
1 

= 240 - p\ + 6p2 - PiP2 

dql 
= - 2P1 -pl d?1 

2-9.!_ 
d?2 
Eql 
EA 

= 6-pl 

Pi oql 
= - ql 0A 

-pl 

whenp
1 

= 5 andp
2 

= 4 

(~) -
Eql 
Ep2 

-(5)(-10-4) 70 
240-25+24-20 = 219 

= 2 240- Pi +6p2 -p1P2 

whenp
1 

= 5 -andp2 = 4 

(
Eql)- -4(6-5) _ -4 
F.p2 -240-25+24-20 - 219 

EXERCISE 2.4 

1) The production function of a commodity is 
p = lOL + 5K - L 2 -2K.2 + 3K.L. 
Find (i) the marginal productivity of labour 

(ii) the marginal productivity of capital 

(iii) the two marginal eroductivities when L = 1 and K = 2 

2) If the production of a :finn is given by P = 3K2L 2 
- 2L4 

- K4, 
oP i)p 

prove that L oL + K oK = 4P. 

3) If the production function is Z = y2 -xy +r where x is the 
labour and y is the capital find the marginal productivities of 
x and y when x = 2 and y = 3. 



4) For some f'um. the number of units produced when us.ing x 
units of labour and y units of capital is given by the production 

function fi.x ,y) = lOOxt yi- . Find 

(i) both marginal productivities. 

(ii) interpret the results when 243 units of labour and 32 units 
of capital are used. 

5) For the production function p = 5(L)0
·
7 (K) 0

·
3 find the 

marginal productivities of labour (L) and capital (K) when 
L = 10 and K = 3. 

6) For the production function P = C(L~ (K)ll where C is a 
positive constant and if a. +(3 = 1 show that 

K oP + L i)p =P. 
oK dL 

7) The demand for a quantity A is q
1 

= 16 -3p
1

....,.. 2p;. Find 

(i) the partial elasticities E.q i , :q1 (ii) the partial elasticities 
Ep 1 P2 

for p 1 = 2 andp2 = 1. 

8) The demand for a commodity A is q
1 

= 10 - 3p
1 

- 2p
2

. Find 
the partial elasticities when p 1 = P 2 = l. 

9) The demand for a comm~dity X is q1 = 15 - A 2 -3p2 . Find 
the partial elasticities when p

1 
= 3 and p.

2 
= 1. 

10) The demand ·function for a commodity Y is q
1 

= 12 - p/ + 
PiPz- Find the partial elasticities when p 1 = 10 and p 2 = 4. 

EXERCISE 2.5 
Choose the correct answer 

1) The stationary value of x 

(a) 3 

' 

(b) .1 
2 

for fi.x) = 3(x-1 )(x-2) is 

2 -3 
(c) - (d) -

3 2 

2) The maximum value offi.x) = cos x is 

3) 

4) 

5) 

(a) 0 (b) ✓3 
2 

y = x3 is always 

1 (c) -
2 

(d) 1 

(a) an increasing function of x (b) decreasing function of x 
(c) a constant function (d) none of these. 

The curve y = 4 - 2x - x2 is 

(a) concave upward 
( c) straight line 

(b) concave downward 

( d) none of these. 

If u = er2 + y' · then ou is equal to • ax 
(a)y2 u (b)x2u (c) 2xu (d) ~ 
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6) 

7) 

8) 

9) 

10) 

11) 

If u = log (eX + eY) then t + s~ is equal to 
1 X 

(a) x Y (b) e (c) 1 (d) eX+ eY 
e +e ex +eY 

If u = xY (x > 0) then ~~ is equal to 

(a) xYlog x (b) log x (c) ylog x (d) log ;r 
xt + y+ 

ft..x, y) = ., ,. is a homogeneous function of degree 
X +y 

(a) .! (b) .1 (c) .1 (d) l. 
2 3 6 5 

If ft..x, y) = 2x + ye •x, then i'y ( 1, 0) is equal to 

(a) e (b) l. (c) e2 (d) -\-
e e 

If ft..x, y) = x3 + y3 + 3xy thenfl\Y is 

(a) 6x (b) 6y (c) 2 (d) 3 

If marginal revenue is Rs.25 and the elasticitiy of demand with 
respect to price is 2, then a~erage revenue is 

(a) Rs.SO (b) Rs.25 (c) Rs.27 (d) Rs.12.50 

12) The elasticity of demand when marginal revenue is zero, is 

13) 

14) 

(a) 1 (b) 2 (c) -5 (d) 0 

The marginal revenue is Rs.40 and the average revenue is 
Rs.60. The elasticity of demand with respect to price is 

(a) 1 (b) 0 ( c) 2 ( d) 3 

a2 u 
If U = x2 - 4xy + y 1 then a_y l is 

(a) 2 (b) 2xy (c) 2x2y (d) 2xy2 

15) If z = x3 + 3xy2 + y3 then the marginal productivity of x ts 

16) 

(a) x2 + y2 (b) 6x-y + 3y2 (c) 3(x2 + y2) (d) (x2 + Y>2 
dql . 

If q 1 = 2000 + ~ 1 - p 2 then -;-- ts 
up, 

(a) 8 (b) -1 (c) 2000 (d) 0 

17) The marginal productivity of labour (L) for the production 
function P = 15K -L2 + 2KL when L = 3 and K = 4 is 

(a) 21 (b) 12 (c) 2 (d) 3 

18) The production function for a finn is P = 3L2 - 5KL + 2k2. 
The marginal productivity .of capital (K) when L = 2 and 
K = 3 is 

(a) 5 (b) 3 (c) 6 (d) 2 , 

19) The cost function y = 40 - 4x + x2 is minimum when x 

(a)x=2 .. (b)x=-2 (c) X = 4 (d)x=-4 

20) If R = 5000 units / year, cl = 20 paise, c3 = Rs.20 then EOQ is 

(a) 1000 (b) 5000 (c) 200 (d) 100 

http:Rs.12.50


3- Integration 

Chapter Includes: 
l. Indefinite integrals as Antiderivatives 

2. Methods of Integration 

3. Basic Theorem on Integration 

4. Some Special Integrals 

5. Integration by Parts 

6. Integration by Partial Fraction 

7. Integration of Rational and Irrational Algebraic Functions 

8. Integration of Transcendental Function 

9. Definite Integral 

10. Evaluation of Definite Integral by Substitu~on 

1 l. Gene~l Properties of Definite Integral 

12. Definite Integral as the Limit of a Sum 

13. Application of Definite Integral to Find the Sum of Infinite 

Series 

INTRODUCTION : 

In our earlier classes we have read four fundamental operations, namely addition, 
subtraction, multiplication and division. It is admitted fact that subtraction is inverse 
process of addition where as division is reverse process of multiplication. 

Integratil 
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Similarly, integration is reverse process of differentiation. We have already discussed in 
earliar section that for a function f on an interval I, we can find its derivative f' at every 
point of the interval. Now, here question arises, if derivative of a function is known in an 
interval, can we find the function? The answer is 'yes' we can find the function, if we 
know that the derivative of a function is also a functio~ which may be a costant or the 
function of independent variable. The set of functions that give as a derivative are called 
antiderivatives of fax function. The fonnula that gives all the 
antiderivatives, is called the indefinite integral of the function and the 
processinvolved,is called integration. Integral calculus was developed for solving the 
problems of finding areas, enclosed by the curves volumes of solids of revolution. 
Integral calculus involves two types of integral namely indefinite and definite interals, 
first we will discuss the indefinite integral. 

3.1 INDEFINITE INTEGRALS AS ANTIDERIVATIVES: 

We know that 

!(';)~, (i) 

! (sinx) =cosx (ii) 

!(ex)=ex (iii) 

and !{logex) =~ (iv) 

2 

We observe that in (i) the polynomial function xis the derived function of ~. we say 
2 

2 

that~ is the anti-derivative (or integral) ofx. Similarly from (ii), (iii) and (iv) sinx, 
2 

e xand loge x are the antiderivatives of (or integrals) of.cos ~ex and 2_ respectively. 
X 

Since the derivative of a real number say C, treated as constant function, is zero and 
hence the equations (i), (ii), (iii) and (iv) can be rewritten as : 

!('; +C )~, 

!!__( sinx + C) = cosx 
dx 



and Now choosing the the value 

of C arbirtary from the set of real numbers there exists infinitely many antiderivative of 
each of the functions mentioned above and as such the antiderivatives ( or integrals) if 
these functions are not unique. The real number C is referred as arbitrary constant or 
constants of interation or parameter of integration. 

More generally, if there is a function F of x such that 

d -[ F( X)] = /( X) 
dx 

as x E / ( an internal) 

Then for any real number C, 

! [ F( X + C)] ::: /( x) x E / 

Thus, [ F( x) + C; C E R] denotes the family of antiderivative of f(x), where C, denotes 

the the arbitrary constant or parameter integration. 

Now, we introduce a new sumbol, namely j f(x )dx, for integration (or antiderivative) 

of 

f( x), we write j /( x )dx = F( x) + C ... ( 1) 

When C is any real number, referred as constant of integration. Due to uncertainity of 
values of C, the in_tegration mentioned in equation ( l ), is called indifinite integral. 

Notation : Given that. dy = f( x ), we write 
dx 

y = j f(x)dx+ C 

Here, 

x is called variable of integration. 

f(x)dx is called integration off (x), with respect tox. 

f (x} is called 'integrand' . 

C is called constant of integration. 
11 The process of finding integral of a function, is know as interation." 

3.2 METHODS OF INTEGRATION : 

We already know the formulae for the deriavatives of so many important 
functions from which we can write directly the corresponding standard formulae 
for the integral of the functions to be integrated. Besides these,there are four 
methods to find the integration of functions, which are mentioned below : 

(i) Integration by Substitution. 

(ii) Integration by parts. 

Integration 
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(iii) Integration by partial fraction. 

(iv) Integration by Successive Reduction. 

3.2.1 INTEGRATION OF STANDARD FUNCTIONS : 

We know that, 

! (x" + c) = nx"-1 

:. fnx"-1dx=x"+C · (fromthedefinitionofintegration) 

And !I(::},' 

! (togex) =~ 

:. f .!.dxO=logex+C 
X 

In this way we can find the integration of standard functions from differentiation. 
Below we give a table for derivatives and antiderivatives (or integrals) of some 
standard functions. 

INTEGRAL 
DIFFERENTIATION 

(ANTI-DERIVATIVE) 

Xn+l d n+I 
(i) n * -1 X C n fx"dx= - +C - - -+ X 

n+l dx n+l 

f .!_dx =log;+ C 
d 1 

(ii) -log x=-
X dx e X 

(iii) f i 4dx=i4 +C !(~)=ex 

ax ! (ax)= ax loge a (iv) f axdx=--+C 
loge a 

(v) f sinx dx = -cosx + C .!!_ ( cosx) = -sinx 
dx 

(vi) f cosxdx =sinx+ C .!!_ ( sinx) = cosx 
dx 

(vii) f sec2 xdx = tanx + C !!_( tanx) = se.c2 
X 

dx 



(viii) f cosec2x dx = -cotx + C 

(ix) f secx tanx dx = secx + C 

(x) f cosecxcotxdx = -cosecx + C 

(xi) f 1 dx . -1 C 
~ =Slll x+ 2 

(xii) f - 1 -1 ~dx=cos x+C 2 

(xiii) f- 1
- dx = tan-1 

X + C 
l+x2 

(xiv) -f-- 1
-dx =coC1 x+C 

l+x2 . 

(xv) f ~dx=~.c-
1
x+C 

X X -} 

(xvi) f ~dx =cosec-1x+C 
X x2 -1 

(xvii) f sinhx dx = coshx + C 

(xviii) f coshx dx = ~hx + C 

(xix) f ~h2xdx = ~hx+ C 

(xx) f sechxtanhx4x = -sechx+ C 

(xxi) f cosech2x dx = -cothx + C 

(xxii) f cosechxco~hx'4 = -cosechx+ C 

(xxiii) f Jb = sinh- 1 
x+ C 

l+x2 

(xxiv) f ~ = cosh-1 
x + C 

x 2 -1 

f dx l x-1 (xxv) -- = - log-, x > 1 
x2-l 2 x+l 

d 
-( cotx) = - cosec2x 
dx 

d 
-( secx) = secx tanx 
dx 
d 
-( cosecx) = -cosecxcotx 
dx 

d l" -1 ) l -stn X = 
dx ✓l-x2 

d ( -1 ) -1 -cosx=~ 
dx 1-x2 

.!!...(tan- Ix) =-1-
dx 1 + x2 

~(coc1x)=--
1
-

dx l+x2 

d ( -1 ) 1 -secx=~ 
dx . X x 2 -1 

~(cosec- 1x) = ~ 
dx X X -1 

!!._( coshx) = sinhx 
dx 

! (sinhx) =coshx 

.!!...( tanhx) = sech2x 
dx 

d 
dx (sechx) = - sec/µtanhx 

! (cot~)= -cosech2x 

d 
dx ( cos ec hx) = -cqs ec hx cot hx 

~(sinh-lx)= 1 
dx .Ji +x2 

d ( sh-I ) 1 -cox=~ 
dx x2 - 1 

d I {'-!) I 
dx 2 lo X + 1 = X 2 - } 

Integration 
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3.3 BASIC THEOREM ON INTEGRATION 

(i) The integral of product of constant and a function, ~-equal fa?die product of the 
constant and integral of the given function. i. e ... 

J /if(x )dx = kJ f(x)dx, Wh~ k is COBlfBDt ·-~·~ 
• ., • ? • .,_~ \ ... • • •• •• • • • 

(ii) The integral of sum or difference of functjons.is-equal to·sum·oratferenceofthe 

integrals of the functions. 
. . \ - . . .. 

J {/1(x )± / 2(x )+ ... }dx =j f1(r}4£ft"i:(.l4'~ .. .' 

J {k2f,(x )± k2f2(x )+ .. '.}dx =·k/j /i(~~)dx±i2_ffi(~)dx+ ... 
# : "t. 

SOLVED.EXAMPLES , 

Example 1. : Evaluate J{h + 4sec2 x}dx . J •• r~ _-

1- x2 . --;.: 

Solution: We have J{h + 4sec2 x}~. -· . ': " . 
1-x · • 

• 

Example 2. : Evaluate J( x 2 + x~ r 
Solution : We have J( 2 4}x I 2.J...• · 41l) ,.J...: r~. 

X +- ·= X u:x.+ ---'--::"U.\ 
x 3 · ' x3· . 

x2+1 · x~l-'H . · 
=- dx+4--.+C 

2 + 1 -:-.3+;} l _ , 

3 
=~+~x-2 +'c 

3 -2 ' 

x 3 2 
= ---+C 

3 x 2 

Example 3. : Evaluate J { ( x + I) 2 ✓x} d;c 



Solution: Wehave J{(x+1)2✓x}dx= J(x2 +2x+l)✓xdx 

Example 4. : Evaluate 

Solution : We have 

= Jx512dx+2J x 312dx+ Jx1/2dx 

x5/2+1 x3/2+1 x 1/2+1 __ 
= - -+- -+ ·•+c 

½+1 ½+1 ½ +I 

X 7/2 XS/ 2 X3/ 2 · 

== ½ + ½ + ½ +C . 

= ?:.,x1f2 + i ·Xs/2 + ~ ·X3/2 + C 
7 5 3 

J
I+sin

2
xdx 

cos2 x 

+sm x dx= - -+ sm x dx 1 ·2 (1 ·2J 
J cos2 x J cos2 x cos2 x 

Example 5. : Evaluate 

Solution : We have 

= J ( sec2 x + tan
2 x) dx 

= J(sec2 x+sec2 x-l)dx 

= J ( 2 sec 2 
X -1) dx 

=2J(2sec
2 

xdx-2)Jdx 

= 2tanx-2x + C 

Jx+I dx 
x-2 

J
x+l dx =Jx-2+3 dx 
x-2 x-2 

= r(1+-3 )dx 
• x-2 

=Jdx+3J-
1
-dx 

x-2 

=x +3log(x-2)+ C 

Integration 
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Example 6. : Evaluate J .Ji + cos2x dx 

Solution: We have 

J ✓1 + cos2x dx = J ✓2cos2 x dx 

Example 7. : Evaluate 

=✓2J cosxdx 

=✓2sinx+C 

J ( cosecx + cotx )
2 

dx 

Solution: We have 

J ( cosecx + cotx )
2 

dx = J (cosec2x + 2cosecxcotx+ cot2x )dx 

= J(cosec2x+cosec2x-1+2cosecxcotx )dx 

= J2cosec2xdx+ J2cosecxcotxdxf dx 

= 2J cosec2xdx +2 J cosecxcotxdx-J dx 

= -2cotx-2cosecx-x + C 

Example 8. : Evaluate J ( ex + 2 sinx - 3 cosx) dx 

Solution : We have 

J(i' +sin.x-cosx)dx = J cdx+ J sinxdx-2J cosxdx 

= ex -cosx-sinx+ C 

Example 9. : Evaluate J 1 dx 
1-sinx 

Solution : We have 

J 1 dx = J 1 + sinx dxf 1 + sinx dx 
1-sinx {l+sinx)(l-sinx)dx (1-sin2 x) 

= Jl +sinx dx 
cos2 x 

J 1 dx J sinx dx - -- + 
- cos2 x cos2 x 

= J sec2 x dx + J secx tanx dx 

= tanx + secx+ C 



Example 10.: Evaluate I (sx + ex + X 
3

) dt 

Solution : We have 

J (sx + ex +x3)dt = J 5xdt + J exdt - J x 3 dt 

Evaluate the following integrals. 

Q. 1.: (i) J( x 2 
- x~ )dt 

Q. 2.: (i) J ( tanx-cotx) 2dt 

Q. 3.: (i). J { sin½ -cos½) 2dt 

Q. 4.: (i) J < sinx + cosx )2 dt 

Q. 5.: (i) J secx( secx + tanx )dt 

Q. 6.: (i) J( ✓x° - JJ dx 

Q. 7 .: (i) J { 2x - 3 cosx + ex) dt 

Q. s.: (i) I 4-3~x dt 
COS X 

Q. 9.: (i) J 1-cos2x dt 
1 +cos2x 

Q. 10.: (i) J I dt 
1-cosx 

(1) (i) 
x3 1 
-+-+C 
3 X 

(ii) (sinx-cosx) + C 

(3) (i) x-cosx+C 

EXERCISE 3.1 

(ii) J-./1 -sin2x dt 

(ii) J dt 
✓x+a-✓x 

(ii) J ( cosecx -cotx )2 dt 

(ii) J(x~i' dx 

(ii) J ( 2x 2 + 3 sinx + s✓x) dt 

(ii) J(2x2
!
3 

+2ex -~)dt 

(ii) J (2x2 + ex) dt 

(ii) J l 
l+cosx 

(ii) J ✓l - cos2x dt 

(ii) J 1
. dt 

l+smx 

ANSWERS 

(2) (i) tanx - cosx + C 

(ii) 2-(x+a)3/2 +2-x3/2 +c 
3a 3a 

(4) (i) cos2x C x - - - + 
2 

Integration 
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(ii) -2cotx - x + 2cosec + C (ii) ~x 1/2~x5f2+za2x3f2 + za3x1/2+ C 
7 5 

(5) (i) tanx + secx + C (6) (i) 
xi 
--4logx - h+C 
2 

(ii) 2 3 20 / (ii) i x 113+2e.r-logx - h+ C -x +3oosx+-x32 +C 
3 3 7 

(7) (i) x2 -3sinx + e-1 + C (8) (i) 4tanx - 3secx + C 

(ii) 
2 
-x 3 +e"+C 
3 

(ii) - cotx+ cosecx+ C 

(9) (i) tanx-x+,C (10) (i) -cosecx-cotx + C 

(ii) -.Ji oosx-log + C (ii) tanx-secx + C 

3.3.1 INTEGRATION BY SUBSTITUTION (CHANGE OF VARIABLES) 

When a function is such that it is difficult to find its integral directy from standard 
results, then we transfonn the given integration to the standard form by changing the 
independent" variable of the integrand in to new variable and then we find the 
integral of the given function. 

The method-of finding integral by changing the variables of integrand into a new 
variable its called integration by substitution. This method is most powerful tool for 
finding the integrals. 

Let the variable x of the integrand f J( x) d:x is changed to a new variable t. 

x =4,(t), then dx =q,(t) 
. dt 

We write _. ·· dx =q,'(t)·dt, then 

j f(x )d:x = f ( q,( t))q,' (t) ·dt 

The method of 'integration by substitution is similar to the_ differentiation of a 
function of a function. 

Usually, we make a substitution for a function whose derivative also occurs in the 
integrand The_ following solved example illustrates this method 

Example 1 : Find th~: following integrals. 

2 . (sin-I x) 2 

(i) J~ (ii) J-'-;::=====-
l + x2 ✓l-x-1 

(iii) f (I+ 1ogx ) 3 dx 
X 

Solution : (i) 

http:method.of


We know thaiderivative of I +x1 =3x2 [ie 1 (1 +x3
) =3x2

] 

The we use.the·Sllbs$uti~n 1 + x 3 
· = t, so that 3x 2 dx = dt. 

~, . .· 

. I 3x
2 

· r·dt .\_ ---:--:fdx, =. , = logt + C 
. l+x t 

= log(l +x3)+ C 
. . 

(ll) We kn~w··~ derivative of_ ~ - t x = Jb then we use the substitution, 

sui-1 x = t so that p dx = dt 
. · · · · 1-x2 

• • ...... - • • ,t ,. • 

. . ' 2 

, .;. -1· {~~l x} tb;··= f 12~~-= !:__ + C 
•' r-£ 3 · · ··, .:•.vl-x~ 

(iii) Weh~.'tbat denvativ.e of 1 + logx = _!_ then we use the substitution, 
. • . . X 

, . ; . ' 1 
· ':i-+ _togx = i, so that - dx = dt 

X 

· ··. f(l+l6gxtdx· -f 3d. _14 
. , ....:..------- - I t--+C 
~ .i '. , .f · : ' · 4. 

(1 + logx)4 
... = ..c.-----:.-+C 

. 4 

3.3.2 SOM·e· FUNC1JONS'WHICH ARE INTEGRArED BY SUBSTITUTION 

(i) Integration or a fundlon of the form /(ax± b) 
. . . 

Let/ (t)-be:~.s~danl~tion which can be integrated by standard formulae and 
•• .,,, .• # • • ~ . : .. · ,. ... -~·~ · 'f /( ~)at =F( t)~ o~ -then·to-find the value of J f = (ax± b )dx 

' 

We pu~ · . ax± b·:;::r·so·ttmt .' axdx = t or dx = dt, then 
a 

·, . 

Integration 

Sdf,lnatructibnpl MaterW 
ill 



Business Mathematics 

Self-lnstc,,ctional Matm§I 
l!lJ. 

(ii) Integration of a function of the form J f ( ~ ( x)) ~' ( x )dx. 

(ill) 

In such type of functions we put 

~(x)=t sothat JfHx)~'(x)dx=dt 

Now, if J f( t )dt can be evaluated from standard formulated thens is changed to x and 

the required integral is obtained. 

f(x)dx 
Integration of a function of the form J I ( ~ ( x)) dx. 

For the above functions we put 

~(x) = t so that ~'(x )dx = dt 

and J ;( ~ &})'1" ~ J 
1
(,) we evaluate 11,is inlegral and then changing the 

variable t into the variable x, we get the required integration. 

Remark : The integration by substitution is a descriptive method of integration. This method 
is also used in the integration by partial fraction, integration by parts. So this method 
can not be luruted for certain functions. · · 

3.3.3 SUBSTITUTION FOR SOME IMPORTANT FUNTIONS 

(i) x = atan9 isusedforthefuntionsa2 +x2, ✓a2 +x2
, 

2 

1 
2 , .J 1 

a +x a2 + x2 

and the functions of these types given in the other forms. 

(ii) X = asin9 or X = acos9 is used for the funtions a 2 
- x2

' .J a2 
- x2

' 2 l 2, 
a -x 

.J 1 
and the functions of these types given in the other forms. 

a2 -x2 

(iii) x = asec9 is used for the funtionsx2 
- a2

, .J x 2 
- a

2
, 2 

1 
2 , .J 1 

and 
x -a x2 -a2 

the functions of these types given in the other forms. 

(iv) x = a-asin9 orx =2asin2 9 is used for the funtions✓2ax -x2 , and the 
functions of these types given in the other forms. 

The fundamental concept of this substitution is to change the function in such form 
which can be integrated easily. 



3.3.4 INTEGRATION OF tanx, cotx, secx and cosecx. 

(i) 
si.nx 

tanx=--
cosx 

_.. I tanxdx = I si.nx 
cosx 

Putting cosx = t, -si.nxdx = dt 

: . J tanxdx =J si.nx dx =J-dt = dt 
cosx t 

= - log t = logcosx 

. 1 
=log- -

cosx 

= logsecx+ C 

:. J tanxdx =logsecx + C 

(ii) Jcotxdx = J ~sx dx, Putting sinx = t, cosxdx == dt 
smx 

_.. J cotxdx = J :; dx =I~, 
= logsinx+ C 

:. J cotxdx =logsinx + C 

(ihj Jsecxdx = J secx ( secx + tanx) dx, 
secx+ tanx 

or, 

= Jsec
2 

x +secx + tanx dx 
secx+ tanx 

:. J secxdx = J ~t = loge t 

= logsinx+ C 

:. J cotxdx =logsinx + C 

= log( secx + tanx) + C 

= logtan(i+ :)+c 

Putting secx + tanx = t 

( secx tanx + sec2
) dx = dt 

( on simplification) 

J secxdx = log ( secx + tanx) + C 

lntegYation 

Seif-lrutr11&WM( H•tttW 
w 



Business Mathematics 

Sc{f-lnstructumql Materlgl 

l.M 

(ill) I _,1_ J cosecx( cosecx + ootx) .L. 
cos ec"'"" = ----------"-""', 

cosecx + cotx 

--Jcosec2x+cosecxxcotx .z.. 
(IA, Putting cosecx + cotx = t, 

cosecx + cotx · 

.(-cos ec_x cotx - cos ec2 x) dx = dt 

· ~cosec2 x + cosxcotx)dx = dt 

=-I~t . 
= -log(cosecx~ ~tx}= log(c~secx+cotx r1 

:. J cosecxdx = log( cosecx - ·cotx) + C 

= log tan½+ C · . (on simplification) 

:. Jcosecxdx=lo~cosecx-~txf+-C .·. __ 

or, 
X 

=logtan-+C 
2 

__ J cosecx( cosecx -coti) __ ,;__ Alternatively (IA, 

cos ecx - cotx . . • . · 

= scosec2
x -cos~cotx ·=·dx 

cosea-cotx • 

= logt+ c 

= logt(cosec-cot)+c' 

= logt(cosec-cot) + ~ 
X 

= logtan-+c 
2 

. · . . ' 

Putting cos ecx - cotx = t 

(.cosecxcotx-cosec2x )dx = dt 

, ., 

' 

. .. 
, ·o:· · ,: . ~ 

3.3.5 INTEGRATION OF aln2 x, cos.2 x~ tan2 x and cot2 x. 



= !x _ !Jcos2x 
2 2 

Now for ½ J cos2x putting 2x = t, so that2dx = dt, dx = ~ 
:. J cos2x = loge( cosecx + cotx) + C cosec2 x - cosxcotx = dt 

= -J ~t = ½ J cost· dt == m; t = ~2x 

J
. 2 1 1 sin2x 

:. sm x=2x - 2--
2
-+c 

(ii) J cos2 xdx = J 
1 
+ ~s2.x dx = ½ J dx + i J cos2xdx, 

J 
2 1 1 sin2x 

:. cos xdx = 2-x+ 2-
2
-+c 

(iii) J tan
2 xdx = J { sec2 x -1) dx, 

=Jsec
2
xdx-J dx 

=tanx-x +C 

J tan 
2 xdx = tanx - x + C 

(iv) J cot2 xdx = J { cosec2x - 1) dx, 

= J (cosec2x-l)dx 

= J cosec
2
xdx-J dx 

=-cotx-x+C 

Jcot2 xdx = - cotx-x+C 

3.3.6 INTEGRATION OF sin3 x, cos3 x, tan3 x and cot3 x. 

(i) J sin3 xdx = J3sinx ~sin3x dx, (: sin3x = 3sinx -4sin3 x) 

= ¾ J sinxdx -¼ J sin3xdx 

-3 1 .. 
= -cosx + -cos3x + C 

4 12 

J
sin3 xdx = J_cos3x-~cosx + C 

12 4 

Integration 
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Second Method : 

J sin3 xdx = f sin2 sinxdx = f (1-cos2 x )smxdx 

13 
=-t+-+C 

3 

J sin3 xdx = -cosx + ( co;x )
3 

+ C 

Puttingcosx = t, 

-sindx = dt 

Weseethattheintegrationofsin3 xfromthedifferentmethodare cos3x - 3cosx and 
12 4 

3 
cos X Th . I b . . difli fi - cosx - - -. ese two mtegra s are same ut wntten m erent orms. 3 . 

(ii) J cos3 xdx, 

J 
3 dx f 3cosx + cos3x dx 

COS X = 
4 

= ¾ J cosxdx + ¼ J cos3xdx 

3 . l sin3x = - smx + - --+ C 
4 4 3 

J 
3 sin3x 3 . 

cos xdx =- -+-smx+C 
12 4 

Alternately, 

J cos3 xdx = cos2 xcosxdx 

= f {l-sin2 x )cosxdx 

= I (1-12
)dt 

= I dt-I t2
dt 

·: cos3x = 4cos3 x - 3cosx 

3 3cosx + cos3x 
cos x=-----

4 

Putting sinx = t, 

cosxdx = dt, 



,3 
==t--+C 

3 

( . )3 . smx = smx - -'--------'-- + C 
3 

J cos
3 

xdx == sinx-isin
3 

x + C 

(Iii) J tan 3 xdx = J tan 2 x · tanx dx 

== J ( sec
2 

x - t) • tanx dx 

== J ( sec
2 

xtanxdx )dx - J tanxdx 

= J sec2 x tanxdx - log secx 

Now,for Jsec2 xtanxdx Putting tanx = t 

:. sec2 xdx == dt 

J sec
2 

x tandx = J tdt 

= .c_ = ( tanx )
2 

2 2 

t2 tan2 X 

J tan3 xdx = - = --- logsecx + C 
2 2 

(Iv) Jcot3 xdx = Jcotx·cot2 xdx = Jcotx(cosec2 -t)dx 

= J cotxcosec2 xdx - J cotx •dx 

= J cotxcosec2 xdx - Iogsindx 

Now, for J cotxcosec2x dx 

J cotx cos ec
2 
xdx = -J tdt 

t2 -(cotx)2 
=--= ~ - ~ 

2 2 
2 

J 
3 cot X . 

cot xdx = - -
2
- - logsmx + C 

Putting cotx = t 

cosec2xdx = dt 

Integration 
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SOLVED EXAMPLES 

1. Evaluate the following integrals. 

(i) 
-1 2 

f xtan X dx 

1 +x4 

(iv) 

( vii) f cosx -~x dx 
cosx + smx 

f cotx logsinx (x) 

(ii) f cos3 
xsin

2 
x dx 

(v) f sinxsin( cosx )dx 

(viii) 

(iii) 

(vi) 

f sinx dx 
sin(x + a) 

f etanx sec2 x dx 

(ix) 

(i) 

Solutions: 
xtan-1 x 2 

f l+x4 dx 
Putting x 2 = 1, 'l.xdx = di 

xtan-1 x 2 1 tan-1 1 
f --dx=-f-d1 

1 +x4 2 1 + 12 

Now, for 

1 
xdx=-dl 

2 

tan-I I 

f-d1 
1 + 12 

Putting tan-11 = u, 

tan-1 I f 2 di= f udu 
1 + I 

( )

2 
-1 2 tan-I X2-

f x tan X dx= . ! +C 
l+x4 2 

(ii) f cos3 xsin.2 xdx = f cosxcos2 xsin2 xdx 

1 
=--dl=du 

1 + 12 



(iii) 

(iv) 

Putting sinx = t, 

:. cosxdx = dt 

J cos3 xsin.2 x dx = J (1- t2)-t.2dt 

= I ,2dt~ I 14 <!t .. :. 

13 "ts · . 
= - -+C 

3 5 . 
. 3 . ·5 

=~-sm _..x+-C 
3 S-·.·· :.': .. 
• 3 • 5 . , 

J 3 ,2 smx smx 
cos xsm xdx = --- - -+ C 

3 - ·-5. --

J sinx dx 
sin(x+a) 

Putting X + a = t 

:. J sinx dx = J sin( t-·a) dt 
sin(x + a) sint 

-Jsintcosa-costsinad - . t 
. sint ·. :· .:. · . 

Ism,cosa ..1. Jcos, . dt-= - --ui- -sma 
sjnt .:· _sint . 

=cosaf dJ--~~J~~tdt 

= cosa(t)-siirafug_smt~ c\ 

:. x=t-a 
dx == dt 

=( x + a)cosa ..;:sina~ logsin(_x + a)+ C1 

=xcosx + acosa -'sin a logsin( x +a)+ C1 

:. I~x) =xcosx-sma·logsin(x+a)+C 
x+a 

Where C = acosa + C1 

:. Jsin(sinx )dx =xcosx - -sina·logsin(x+a)+C 
x+a 

integration 
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(v) 

:. f i' -e-x dx=fdt 
fl+ e-x t 

= logt+C 

=log(ex +e-x)+c 

J sinxsin( cosx )dx 

J sinxsin( cosx )dx = -f sintdt 

=cost+C 

=cos(cosx) +C 

.. J ~xsin(cosx)~ = e<>s( cosx)+C 

J etanx sec2 xdx = f e1dt 

=e' +C 

=etanx +C 

J e~x sec2 xdx = etanx + C 

Putting cosx = ' 

-sinxdx =dt 

sinxdx = -dt 

Putting tanx = t 

:. sec2 xdx = dt 

(vij) J cosx - ~x dx 
cosx+smx 

Putting cosx + sipx = t 

:. f cosx-~x dx = f dt 
cosx+smx t 

= logt+C 

( -sj.nx + cosx) dx = dt 

or ( cosx - sinx )dx = dt 

= log( cosx + sinx) + C 



J
cosx-sinx ( . ) :. . dx = log cosx + smx + C 
cosx+ smx 

(viii) J 1 dx 
1 + tanx 

J 1 dx=J 1 dx 
1+ tanx sinx l+--

cosx 

J 
cosx 

= cosx+sinx 

1 J 2cosx 
= 2 cosx + sinx 

= ! J cosx + sinx + cosx - sinx dx 
2 cosx+sinx 

= .!.Jt1x+ .!.Jcosx-sinx dx 
2 2 cosx + sinx 

For J cosx -~x dx 
cosx+ smx 

Putting cosx + sinx = t 

( -sinx + cosx) dx = u 

or { cosx - sinx) dx = dt 

J 
cosx -~x dx = f dt 
cosx + smx t 

= logt 

= log( cosx + sinx) 

J 
1 

dx = .!. x + log( cosx + sinx) + C 
1 + tanx 2 

(ix) J cotx logsinx dx Putting logsinx = t 
1 

- .- cosx dx = dt 
smx 

J cotx logsinx dx =ft dt 

12 
=-+C 

2 

= (logsinx )
2 

+ C 
2 

or cotxdx = dt 

Integration 
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(1 . )2 . o smx :. J cotx Jogsmxdx = g 
2 

+ C 

(x) Putting tan -l X = t 

1 
-- dx=dt 
1 +x2 

sin {tan -I x) 
:. f ---'--_.a....dx = I sintdt 

1 +x2 

= -cost+ C 

= -cos( tan-1 x) + C 

sin{tan-1 x) · 
:. f---'------dx =-cos(tan-1 x) + C 

1 +x2 

2. Evaluate the following integrals. 

(i) J sin4xcos3xdx (ii) J tan
3 xsec5 xdx (iii) 

(iv) sin2(2x + 5) (v) sin3 (2x+ 1) (vi) 

(vii) . 4 
SID X (viii) tan4 

X (ix) cos2xcos4xcos6x 

Solutions: 

(i) J sin4xcos3xdx =} J {sin( 4x+ 3x) + sin( 4x-3x )}dx 

= i J {sin?x + sin(-x )}dx 

=} J {sin ?x-sinx} dx 

J sin4xcos3xdx =} J sin ?xdx-l J sinxdx 

1 . 1 
= --cos ?xdx + -cosx + C 

14 2 

Jsin4xcos3x = _ _!.._cos?x + !cosx + C 
14 2 

(H) J tan3 xsec5 x dx = J tanxsecx( tan2 xsec4 x) dx 

2xsin(x2 + t) 
cos4 2x 

(x) 
1-cosx 

1 + cosx 



= J { sec2 
x) {sec4 

x )secx tanx dx Puttingsecx = t 

= J(t2 
-l)t4dt 

= J (t6 - t4) dt 

= J t6
dt-J t4

dt 

,1 is 
=---+C 

7 5 

secs x secs x 
= - ---- +C 

7 . 5 

3 s secs x secs x 
Jtan xsec xdx =-----+C 

7 5 

= -cost+ C 

_ = -cos(x2 + 1) + C 

(iv) J sin2(2x + 5)dx 

Jsin2(2x+S)dx = Jl-cos~2x+5) dx 

:.secxtanx dx = dt 

Puttingx 2 + 1 = t 

: .2xdx =dt 

cos2x = l-2sin2 
x 

• 2 1-cosx 
, Slil x--- -.. - 2 

= i J dx -~ J cos( 4x + 10) dx 

= !x _!Jcos( 4x + IO)dx 
2 2 

Integration 
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For J cos( 4x + lO}dx 

J cos( 4x + lO}dx = ¼ J costdt 

1 . 
=- smt 

4 

= .!_sint( 4x + 10} 
4 

Jsin 2 
( 2x + 5 )dx = ! x - ! sin( 4x + 10) + C 

2 8 

or Jsin2(2x + S)dx = !x _.!_sin2(2x + 5) + C 
2 8 

(v) f sin3{2x + I}dx ·· 

Putting 4x + 10 = t 

4dx = dt 

1 
dx =-dt 

4 

.·. J sin3 (2x + l}dx =f 3sin(2x + l}-~3(2x + l}dx 

=¾Jsin(2x+l}-¼Jsin(6x+3}dx ·; sin'.h=3sinx-4sin3 x 

For 

sin 3 X 3sin X -sin '.h 
4 

J sin(2x + I}dx Putting 2x + 1 = t 

¾ f sin(2x + l}dx = if sintdt 

Andfor fsin(6x+3}dx 

3 =--cost 
8 

=-Icost(2x+l}+C 
8 

:. ! J sin( 6x + 3)dx = __!_ f sinudu 
4 . 24 

I =--cosu+C2 
24 

2dx = dt 

1 
dx =-dt 

2 

Putting 6x + 3 = u 

6 dx. = du 

dx =!du 
6 



= -
2
~ cos( 6x + 3) + C2 

:. fsin3 (2x + l)tn = -~cos(2x + 1) + C1 _ __!__cos(6x+ 3)+ C2 · 8 24 

= -lcos(2x + 1)-
2
~ cos( 6x + 3) + C 

3 1 
= - 8cos(2x + 1)-

24 
cos3(2x + 1)+ C 

Where C1 +C2 =C 

:. fsin3(2x + l)dx = -~cos(2x + 1)--
1 

cos3(2x + 1) + C 
8 24 

(vi) f cos4 2x dx = f ( cos2 ix) 2 
dx 

= f (1 + ~•4x )' dx 2 1 + cos2 
x 

'.' COS X = ---
2 

= f(1+cos
2
4: + 2cos4x )d,: 

= _!.fdx + ~fcos4x +_!.fl+ cos8x ·dx 
4 4 4 2 

1 f 1 f 1 f 1 + cos8x =- dx+- cos4xth+- ---·dx 
4 2 4 2 . 

· 3 1 1 
= sf dx+ 2f cos4xdx+ sf cos8x•dx 

3 1. 4 1 ·8xc =-x+-sm x+ - sm + 
8 8 8x8 

3 sin4x sin8x 
=-x+--+--+C 

8 8 64 

: . fcos4 2x= ~x+ .!.sin4x + __!__sin8x + C 
8 8 64 

(vii) f sin4 xdx = f (sin2 
x)

2 
dx 

= rc-~•2x )'"' 
= ¾f (1+cos

2
2x-2cos2x)dx 

Integration 
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=¾J dx - ¾J cos2x+ ¾J cos
2

2xdx 

= _!_ Jr1x-! Jcos2x + ! J 1 + cos4x dx 
4 2 4 2 

= ¼J dx-1 J cos2x + ½ J dx +½ J cos4xdx 

= f J dx-i J cos2xdx + i J cos4xdx 

3 1 sin2x 1 sin 4x 
=-x-- x --+-- -+C 

8 2 2 8 4 

3 l . 2x .1. 4 C =- x - -sm +sm-sm x+ 
8 4 32 

:. Jsin4 xdx = Ix-_!_sin2x + J__sin4x + C 
8 4 32 

= J tan2 x(sec2 
x-l)dx 

= J sec2 xtan2 xdx- J tan2 xdx 

= J sec2 xtan2 xdx-J ( sec2 x-1) dx 

= J sec2 xtan2 
x dx-J sec2 

xdx + J dx 

Now for, J sec2 xtan2 xdx 

Thus . J sec2 xtan2 
xdx = t2dt 

_ t 3 I 
- / 3 

- tan3 xi - 73 

:. J tan4 xdx = ½tan3 x - tanx + x + C 

J tan
4 

xdx =x - tanx+itan3 x+C 

Putting tanx = I 

sec2 xdx = dt 

(ix) J cos2xcos4xcos6x = ½ J ( cos6x + c~s2x )cos6xdx 



(x) 

(·: cosAcosB = ½[ cos(A + B)+ co~( A -B)]) 

= ½ J cos
2 

6xdx + 1 J cos2xcos6xdx 

= !J(l + cos12x) dx + ~J( cos8x + cos4x) dx 
2 . 2 2 2 

= _!_Jdx + !cosl2xdx + !Jcos8xdx + !Jcos4xdx 
4 4 4 4 

X 1 . 12x 1 . 8 1 . 4 C =-+-sm +-sm x+-sm x+ 
4 48 32 16 

:. Jcos2xcos4xcos6x = .!..[x + _!_sinl2x + ~sin8x + _!_sin4x] + C 
4 12 8 4 

For 

J 1-cosx dx = J 2sin
2 
x/2 dx 

1 + cosx 2cos2 x/2 

= J tan
2 x/2ttx 

= J{sec
2 

x/2-l)dx . 
= J sec2 x/2<b - J dx 

= J2tan1-x+C 

Jsec2 idx 

J sec
2 
idx = 2J sec

2
tdt 

=2tant 

X 
=2tan-

2 

. . I 1 - cosx dx = 2 tan.:: - X + C 
l+cosx 2 

·: cos2x = 2cos2 x -1 

=l - 2sin2 x 

X · 
Putting2 =, 

dx =2dt 

Integration 
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EXERCISE 3.2 

Integrate the following functio~ : 

Q.1.: (i) 
4x3 

1 +x8 

(vi) 

(iii) 

1 
---,x>O 
x(logxy 

1 

(x +xJogx) 

(vii) 

sinx 
(iv) 

1 +cosx 

X 

9+3x2 

Q. 2.: (i) sin( ax+ b )cos( ax+ b) (ii) 
1 

sin(x-a )sin(x - b) 

(iii) 
smx 

sin(x-a) 

Q. 3.: 
1 

cos2 x(l-tanx ) 2 

Q.6.: 
1 

l+cosx 

Q. 9.: 
x3 tan.x4 

l+x8 

Q. 12.: .Jsin2x cos2x 

Q.15.: 
cosx 

.JI +sinx 

Q.18..: 
sinxcosx 

.JI +sin2 
X 

Q. 21.: 
cosx 

cos(x - b) 

Q. 24.: 
x4 

f x2 +1 

(iv) (x + l)(x + logx) (v) cosx 
X sin3x 

Q. 4.: 
✓timx 

sinxcosx 
Q. 5.: 

1 

1-tanx 

Q. 7.: 
1 

1-cosx 
. Q. 8.: 

Q. 10.: 
tan4 ✓x ·sec2 ✓x 2cosx-3~x 

Q. 11.: 
✓x 6cosx + 4sinx 

Q. 13.: 
cosx 

1 +sinx 
l 

Q. 14.: 
1 +cosx 

ex -1 
Q. 17.: 

sinx 
Q.16.:-

1 +cos2 x c+l 

Q.19.: 
sin-I ..Jx 

Q. 20.: 
1 

✓x •✓1-x sinx+cosx 

Q. 22.: 
c 

Q. 23.: 
ex -sinx 

l+e2.x ex +cosx 

1 c(l+x) 
Q. 25.: 

ex -1 
Q. 26.: 

cos2(xex) 

Q. 27.: 
x2 tan- I x3 

Q. 28.: sin-I ( COSX) Q. 29.: cos-1(sinx) Q. 30.: 
COS

4 
X 

l+x6 sinx 

ANSWERS 

(1) (i) (ii) 
1 

- ---2+C 
18(2 + 3x3

) 



(iii) log( 1 + logx) + C (iv) 
1 

log- -+C 
1 +cosx 

(2) 
1 

(i) --co&{ 2ax + secx2b) + C 
4a 

(ii) _1_ iog{-sin ___ (x~-~a )} + C 
sin(a-b) sin(x-b) 

(iii) xcosa+si.nalog(x-a)+C (iv) !(x+logx)3+C (v)-!cosec2x+C 
3 2 

1 
(3) ( ) + C 1-tanx 

(6) -cotx + cosecx + C 

(9) i( tan-1 x)
2 

+C 

(12) !( sin2x )½ + C 
3 

(4) 2✓tanx + C (5) ~-~log( cosx - sinx) + 9 

(7) -cotx-cosecx + C (8) - ¾cos( tan-1 x4
) + C 

(10) 
2 · s 1 

5(tan ✓x) +C(ll) 2log(3cosx+2sin)+C 

(13) log( 1 + sinx) + C (14) !x-!log(cosx +si.nx) +C 
2 2 

(15) 2✓1 + sinx + C (16) log(i' + e-x) +C (17) - tan- 1
( cosx )+ C 

(18) 2✓l+si.n2 x +C 

(20) }i·tan( ~+ ;)+c or }i1og(cosec(x+1t/4)) - cot(x+n/4)+C 

(21) xcosb+sinblogcos(x-b)+C (22) tan-1(e1)+·c (23) log(<+cosx) + c 

3 

(24) x
3 

-x + tan- 1 x+C (25) log(l-ex)+c (26) tan(xex) + C 

7t x2 
(29) - x- - +C 

2 2 

7t x 2 7t x2 
(28) -x+-+C or -x - -+C 

2 2 2 2 

(30) lo,.,/sinx)+!si.n8 x-~sin6 x+Isin4 x-2si.n2 x 
5\ 8 · 3 2 

3.4 SOME SPECIAL INTEGRALS 

The following formulae of integrals can be directly applied for integrating various 
functions. 

(1) J dx = -1 lojx-al 1-C 
x 2 

- a 2 2a ix + c 

Integration 
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(1) 

(2) Ja2~x2 ==2lalo~: ~; j+c 

(3) J dx ==_!_tan-•~+ C 
x 2 + a 2 a . a 

Now we shall prove the above results : 

J 
1 1 

x2 -a2 - (x-a)(x+a) 

1. {(x+a)(x-a)} 
== 2a (x-a}(x+ a} 

sh-1 X 
co -

a 

~ ;a {(x~a) - (x~a)} 

f x' ~a'; 2~[J (x~a) -J (x~a)] 

== _!_ log(lx-al - loglx.+ ~] + C 
2a 

=- log +C 1 ~-a1 
2a x+a 

(2) We have 
1 1 --- ==-- --a2 -xi xi -a2 



From result (1) we have, 

J dx =--1 log1x-al+C 
a2 -x2 2a x+a 

or =-1 loglx+ai+c 
2a x-a 

(3) J dx 
x2 +a2 

(4) 

J dx J asec
2 

8d0 
x 2 +a2 = a2 tan2 0+a2 

=.!_Jsec
2

0d0 
a sec2 0 

= .!_ J d0 
a 

l 
=-0+C 

a 

J dx = J asec0tan0d0 
✓a2 +x2 ✓a2sec28-a2 

= J asec0 tan0 de 
a✓sec2 0-1 

= f /lsec01#0 dO 
/lUti0 

= Jsec0d0 

= log~0 + tan0I + C1 

Putting X = a tan0 

·r1x ? = asec- bao 

Putting x = asec0 

dx = asec0tan0d0 

Where C = C1 - loga 

lntegratum 
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(5) J dx 
.Ja2 -x2 

Putting X = a sin 0 
dx = acos0d0 

(6) 

J dx J acos0d0 J acos0d0 

.J a2 -x2 = .Ja2 -a2 sin2 8 = a.JI-sin2 8 

I dx 
.Jx2 + a2 

= J acos8d8 = J p¢~-0d8 

a.Jcos2 0 i'U-0 

= J.d8 

=O+C 

. -1 X C =sm -+ 
a 

Putting X = atan0 

dx = asec2 8d8 

. J dx -J asec
2
0d0 

· · ✓x2 + a2 - .Ja2 tan20 + a2 

= f asec
2
0d0 = f asec

2
0d8 

a.Jtan28 + 1 a.Jsec
2
8 

=f psec
2
8d0 

p#,¢0 

= J sec0d0 

= log~0+ tan0/+ C1 

✓x2 +a2 x 
=log-- -+- +C1 a a 

Where C =a-log a 

(7) J dx 
x✓x2 -a2 

Putting x = asec8 
dx = asec0tan8d8 

. f dx = f . M¢¢0 tan0d0 

·· ✓x2 -a2 i'#¢0.Ja2 sec20-a2 

= f tan0d8 

a.Jsec28-l 

X 

a 



=! J tan0d0 
a ✓tan28 

=!Jtui0d9 
a t#0 

=!J d9 
a 

l 
=-9+C1 a 

l -1 X C =-sec -+ 
a a 

Putting X = asin9 
dx =acos9d9 

:. J .Ja2 -x2 dx = J ✓a2 -a2 sin2 9 ·acos9d9 

= J a2 ✓l-sin2 9 •cos0d9 

= a2 J ✓sin2 9 -cos9d0 

= a2 J cos2 9d9 

=a2Jl+:s20 de 

= a: LJ d0+JCQs29d0] 

=•:[a+ 2sm:co•8]+c 

a
2 [sin-1 

x x ✓a2 
-x

2
] =- ---+-·--- +C 

2 a a a 

a 2 sin-1 x x .J 2 2 
=-·--+- •a - x +C 

2 a 2 
2 · -1 X.J2 2 a smx =--·a - x +-·-- +C 

2 2 a 

3.5 INTEGRATION BY PARTS 

·: cos29 = 2cos2 0 -1 

This method of integration is more useful for integration of products of two functions. 
Any one of which may be algebraic, exponential, logarithmic, trigonometric function. 

lntegratior. 
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If u and v be two differential functions of independent variable x, then by product rule 
of differentiation of two functions, we have -

d ) dv du -(uv =u-+v-
dx dx dx 

Integrating both sides with respect to x, we get, 

I dv Jdu 
UV= U dx ·dx+ V dx dx 

I dv J du U dx·dx=UV- V dxdx ... (1) 

Let u = f(x); and dv ) -=g(x then 
dx 

du= f'(x) and 
dx 

Using above expression ( l) can be rewritten as -

J t(x)g(x )dx = t(x) J g(x )<1x-J[ a g(x )dx )t'(x) ]<tx 

or J f(x)g(x)dx = f(x) J g(x )dx-J[J'(x) J g(x )<tx]dx 

Now, talcing.f and g separately first and second function, then the above formulae may 
be stated as : 

The integral of product of two functions 

= The first function x integral of second 
- integral of differential coefficient of the first 

function x integral of second function. 

3.5.1 SELECTION OF FIRST AND SECOND FUNCTION 
. 

We take the integra4 whose integral is known as second function. If the integral of 
both functions are known then we must be more careful for the selection of first and 
second function. 

(i) If out of two functions one contains the integral power of the variable x, and other 
function is either trigonometric or exponential, then we take the function involving 
integral power of x as first and other as second function. 

For example in J x2 sinxdx, we takex2 as first function and sinxas second where as 

in J x 3 i'· dx, we take x3 as first function and e' as second function. 

(ii) If one of the function contains integral power of x and other is either logarithmic or 
inverse circular function, then in this case logarithmic or inverse circular function is 
taken as first function and the ~ction involving integral powre of x as second 



function. For example-in Jx 4 logx dx, logxis taken as first functionasx 4 as second. 

Similarly, in Jx 3 sin-1 xdx, sin-1 xis taken as first function and x3 as second 

function. 

(iii) Sometimes, it becomes difficult to integrate a single function. So we take unity (i.e. 1) 
as second function. For example -we can not evaluate J logxdx, so we take 1 as 

second function and write the integral as J logx • l dx, similarly, to evaluate J sin-1 x dx 

we take sin-1x as first function and 1 as second function and we write J sin-1 x· l · dx. 

(iv) If out of the two functions one is trigonometric and other is exponential then to 
integrate such functions we choose first or second function according to our 
convenience. For example in Jex • si.nx, we can take any of the functions ex or sinx as 

first or second function. 

Sometimes, after certain stage, the original integral occurs, in the process of 
integration, then we transfer it to the left hand side. 

SOLVED EXAMPLES 

(1) J x2 sinx dx 

Let I = J x 2 sinx dx 

Taking x2 as first function and sinx as second function. 

Using integration by parts, we get, 

I= Jx 2 sinxdx =x
2 
J[sinxdx]-[J ! x2 

Jsi.nxdx ]dx 

or 1 = J x2 sinxdx =: -x2 cosx-J[ 2x(-cosx )]dx 

or 

Let 

1 = J x 2 sinx dx = - x2 cosx + 2J xcosx dx 

11 = J xcosx dx 

... (1) 

Talcing x as first function and sin x as second, and integrating by parts we get, 
. d 

11 =xJ cosxdx-f dx (x )J[cosxdx]dx 

= x( sinx )-J 1 •sinxdx 

= -xsinx +cosx + C 

= -xcosx + sinx + C1 

Putting two values in ( 1) we get, 

- ------ - - ------ - · 

Integration 
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I= -x2 cosx + 2.rsinx + 2cosx + C 

(2) f x2exdx 

Let J = f x 2exdx 

Taking x2 as first function and ex as second, and integrating by parts we get, 

(3) f x2 logx dx 

I =x
2 f exdx-f[!x

2 f cdx ]dx 

=x2c -f 2.t-cdx 

_ =x2c -2[x·ex -f ! (x )-J exdx ]dx 
=x2ex -2.t·C -2f i'dx 

=.t2 -2xex -2ex +C 

Let J = f x2 logx 

Taking log x as first function and x2 as second, and integrating by parts we 
get, 

x 3 1 x 3 

=logx--f-·-dx 
3 X 3 

.t3 1 
= -logx - -f x2 dx 

3 3 

x3 1 x3 

=-logx--·-+C 
3 3 3 

1 3 1 3 
=-x logx--x +C 

3 9 

(4) f x 2 tan-1 xdx 

Let I = f x2 tan-1 xdx 

Taking tan -I x as first function and x2 as second, and integrating by parts we get, 



1 3 - 1 1 2 1 . ( 2) = - x tan x - - x + - -log 1 + x + C 
3 6 6 

(S) Jlogxdx 

Let I= Jlogxdt 

We can not evaluate the given integral directly, so, we rewrite it as: 

I= J(Iogx ·l)dt. Wehave taken 1 asthesecondfunctionandbyapplying 

integration by parts, we get 

I= logxJl·dt-J[! logxf idt ]dt 

= logx·xn-J _!_ ·tdt 
t 

= logx - x+C 

I =x(logx-l)+C 

(6) J ~ - t xdt 

Let I= J sin-1 xdt 

Rewriting above integral and using integration by part taking 1 as second function 
we get, 

I= J(sin- 1 x·l)dt 

=sin-
1 
xJ ldt-J[! sin-

1 
xJl-·dt ]dt 

Integration 

Sdf-lMtrtH119Mi MqtpW 
ill. 



/:lusiness Mathematics 

Self..Jtutractionlll M111o1q1 
ill 

. - I f 1 dx =xsm x-
✓l-x2 

= xsin-1 -✓l-x2 +C 

(7) f ex sinx dx 

Let / = f ex sinx dx 

Taking ex as first and sin x as second function and applying integration by parts we 
get, 

I= ex f sinxdx-J[! ex f sinx ·dx ]dx 

= ex(-cosx )-f ex(-cosx )dx 

= -cosx ex+ f ex cosx dx 

= - ex cosx + e" sinx - f ex sinx dx 

= - ex cosx + ex sinx - I 

I+ I= -ex cosx+ ex sinx + cl 

2/ = -ex cosx+ ex sinx + C1 

or l=ex(sinx-cosx)+C 

(8) f eax sin bx ·dx 

Let I= f eax sinbx •dx 

Taking eax as first and sin bx as second function and applying integration by parts 
we get, 

I= eax f sin bx -J[! eax f sinbx ·dx ]dx 

= eax( -co;bx ) - f aeax( -co:bx )dx 

cosbxeax af ax b dx =----+- e COS X 
b b 

. ' . - . 
= eaxcosbx +~I 

b b i, 
... (1) 



Where, 

Taking eax as first and cos bx as second function in l 1 and integration by parts 

we get, 

11 = CJ cos bxdx- .r[ ! c J ( cos bxdx) dx] dx 

-e - - - ae - - -_ x sin bx J ax ( sinbx)dx 
b b 

eax sin bx a J ax . b dx = - ----· ae SID X 
b b 

= eax sinbx _!!_ _1 
b b 

Putting 11 in (i) from above, we get 

l=- eaxcosbx +!!..[eaxsinbx _!!...J] 
b b b b 

ax b 2 e cos x a ax • b a 1 = ---+-e sm x-- · 
b b2 b2 

or 
eax cosbx a ax . b 

+ 2 e SID X 
b b 

b + a 
1 

eax cos bx a ax . b 
· = - - - +-e SlD X ( 

2 2) . 
b2 b b2 

Hence, 
eax 

l=( ) (asinbx-bcosbx)+C 
a2 + b2 

eax 
= J eax sin bx dx = 

2 2 
( asinbx - bcosbx) + C 

a +b 
ax 

Similarly. J,~ cosbxdx - ( e ) ·( acosbx-bsinbx) + C 
a2 +b2 

(9) J sec3 
X ·dx 

Let l = f sec 3 x • dx 

Takingsecx as first and sec2 x as second function and applying integration by 
parts we get, 

Integration 
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I =secxJ sec
2 

xdx - J[! secxJ sec
2 

xdx ]dx 

=secx•tanx-J secxtanxtanxdx 

=secx·tanx-Jsecxtan2 xdx 

= secx · tanx - J secx ( sec2 x - 1) dx 

= secx • tanx - J secx • sec2 x dx + J secx dx 

= secx • tanx - I + J secx dx 

or 2/ = secx · tanx + log( secx + tanx) + C 

or 

(10) 

(11) 

1 I 
:. I= -secx • tanx + -log( secx + tanx) + C 

2 2 . · 

Jsec3 xdx·= !secxtanx + ! log(secx+ tanx) + C 
2 2 

Ix-sinx 
- --·dx 
1-cosx 

Let / = Jx-sinx ·dx 
1-cosx 

= J x - 2sin ½ cos½' ·dx 

2sin
2 ½ 

= i J xcosec
2 ½ dx-J cot½ dx 

=1[x{-2cot½)-J1-(-2cot½)dx ]-Jcot½dx 

=-xcoti+ Jut½ 41,-Jut½ 41, 

Ix-sinx x 
---·dx =-xcot-+C 
1-cosx 2 

J; J xe dx 
(1 +x)2 

xex 
Let , 1 = J--·dx 

(1+x)2 



= f(x+l-l)e.r ·dx 
(1 +x)2 

= f (x + l)e.r dx-f ex ·dx 
{l+x)

2 
(1+x)

2 

.r 1 .r 
- e + f--e.r dx-f e dx 
-(l+x) (1+x)2 (l+x)2 

(12) f ~( sinx + cosx) ·dx 

(13) 

Let / = f e.r(sinx+cosx) •dx 

= f ~ sinxdx+ f e.r cosxdx 

= f ex sinx dx + e.r sinx - f e.r sinx dx 

= e.r sinx + C 

:. f e.r(sinx + cosx) ·dx = ex sinx + C 

f e.r(tan-1 X + _1 _2 )·dx 
l+x 

Let / = f e.r(tan-1 x + -
1
-2 ) •dx 

l+x 

=f~tan-1 x ·dx+ ~ -
1

- -dx 
l+x2 

= f ex tan-1 x · dx + e.r tan-1 x - f ex tan- Ix ·dx 

=e.r tan-1 x+C 

Integration 
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(14) 

(16) 

Let J = f ex(;-- x~ }dx 
=J~.!.dx-fex_I ·dx 

X X2 

f ex(I + sinx)·dx 
1 +cosx 

Let I= Jex( l + sinx ) ·dx 
1 +cosx 

I X dx 
1 + cosx 

Let J = f x •dx 
I +cosx 



Let 

X X 
= x tan- -2 logsec- + C 

2 2 

I X X X 
- - ·dx =xtan--2logsec- +C 
1 +cosx 2 2 

Putting X = sin 8 

1 = J8 •cos8d8 ·dx 
cos3 8d8 

dx = cos8d8 

= J e -sec2 ede = e tans- J 1 -tanede 

= 8 -tan8 - logsec8 + C 

. - 1 X I 1 C =sm x • r:--;- og ,.--, + 
v'l-x2 v'l -x2 

= nsin-1 x+! log(l-x2) + C 
l-x2 2 

J ,m- I X ½ ·tb = nsm-1 x+!log(t-x') +c 
(1-x2) 2 1-x 2 

EXERCISE 5.1 

Evaluate the following integrals : . 

I 

Q.1.: x2 sinx Q. 2.: tan-1 x Q. 3. : x sin3x Q. 4 : e2x sinx 

X 

Q.S.: Q.7.: (x - 3)e' Q.8: ,m- I ( 2x) 
(x-1)

3 
l+x2 

Q.9.: ,m-I ✓ x Q.10.: co,-1( l-x2 ) Q.11.: ef;E,/X Q. 12.: - 1__ 1 2 
a+x .l+x2 x logx (Iogx) 

x log(logx) xtan-1 x 
Q.13.: -- Q.14.: - -'-----'- Q.15.: ex sinxcosx Q.16.: · 

312 
l+sinx x (1+ x2) 

Integration 
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xi e.f -1 
Q.17.: 

2 
Q. 18.: p 

(x+2) Q.19.: ( 2) 3/2 
l+x 

Q.20.: 
e .f(l-sinx) 

(1-cosx) 

logx 
Q. 21.: 

x3 

e2(x + 1) 
Q. 22.: 2 

(1 +x) 
Q. 23.: e.f { 1 + ✓l-x2 sin-1-x }.Jt-x2 

(1) 

. (3). 

ANSWERS 

-x2 •cosx + 2xsinx + 2cosx + C (2) 

(4) -~cos3x + !sin3x + C 
3 9 

(13) x tanx - logsecx - x secx + log( secx + tanx) + C 
.f 

(14) logx [ log( logx )-1] + C (15) ~ ( sin2x - 2cos2x) + C 
10 

x-tan-1 x (x-2) 
(16) ---+C (17) -'--~ex+C 

✓1 +x2 (x+2) 
(18) .{ cos-1 x✓l-x2 + x ]+ C 

(19) m1an-1J m + X ] C 
e l(1+m2).J1+x2 + 

(20) X X C -e cot-+ 
2 

(21) 

(24) 

3.6 

(22) ex(x -l)(x + 1) + C 

(25) xi°+ C 

INTEGRATION BY PARTIAL FRACTION 

If a fraction is in the form of an improper fraction or composite fraction then to find 
the in:tegration of such functions we resolve then into proper fraction and partial 
fraction. Now we integrate each fraction differently and find the algebraic sum to get' 
the integral of the given function. 



This method is used in finding the integration of rational algebraic fractions as well as 
the integration of product of some trigonometrical functions. 

SOLVED EXAMPLES 

1. Evaluate J xdx 
(x+I)(x+2) · 

To integrate the above function, we have to breack it into partial fractions. 

X A B 
Let, (x+l)(x+2) = (x+l) + (x+2) 

Where A and B are real numbers to be determined. These real numbers can be 
determined in many ways. Here, we shall discuss two methods only. 

Method - 1. (Comapriog the Coefficient of like Terms) 

X A B 
Wehave, ---- = - - + - -

(x+l)(x+2) (x+l) (x+2) 

or x=A(x +2) +B(x+1) 

x=(A+B)x+2A+B 

Comparing the coefficient of x and the constant terms we get -

A+B=1 

2A+B=0 

Solving these equations, we get A = -1, B = 2 

Method • l. (Choosing the value of x) 

Choosing x == 0 and x = I, in (2), we get 

2A+B =0 and 3A + 2B = l 

Solving these equations we get, A = - 1, B = 2 

:. the integrand is given by 

X 1 2 
--- --,-= - - +- -
(x+ l)(x+2) (x+l) (x+2) 

I X dx =-J l dx+2J l dx 
(x+I)(x+2) (x+l) (x+2) 

= -log(x+ 1)+ 2log(x + 2)+ c· 

( )
2 

x+2 
=log-- - +C 

(x+l) 

.. . (1) 

... (2) 

/ntegr011 
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x2 + 1 
2. Evaluate f ( ) dx 

x 2 +5x+6 

Here, the integrand ( \ is not proper rational function. So we have to 
x2 + 5x+ 6} 

x 2 + 1 

divide the numerator by the denominator, 

Let, 

x
2 

+1 =l- Sx+S 

(x2 +5x+6) x2 
+5x+6 

=l- 5x+5 
(x+2) (x+3) 

5x+5 A B 
-----=--+--
(x+ 2) (x+3) x+2 x+3 

Sx+S =A(x+3)+B(x+2) 

Sx+ 5 = (A +B)x+(3A+2B) 

Equating the coefficient of x and constant we get, 

A+B=S 

3A +2B =5 

Solving these equation we get, 

A =-5, B =10 

5x+5 5 10 
- --- -= ---+- -
(x +2) (x+3) · x+2 x+3 

I x2 + 1 dx f ldx [J( -5 10 )dx] 
(x2 +5x+6) = - x+2 + x+3 

= f dx + sf- 1-dx - tof- 1-dx 
x+2 x+3 

= x+5log(x +2) - lOlog(x + 3)+ C 

f 
xdx 

3. Evaluate ( ) 
x2 + 1 (x + 1) 

Here, the itegrand is a proper fraction, so we decompose it into partial fraction. Now, 

x A Bx+C 
-----=- -+--
(x2 +1) (x+l) x+l x

2 +1 

x = A(x
2 

+1) +(~x+_c) (x + 1) 



x=(A+B)x2 +(B+C)x+l(A+C) 

Equating the coefficient ofx, x 2 and constant on both sides, we-get, 

A+B = 5 

B+C=l 

A+C=O 

Solving these equation we get, 

A=_!. 1 1 
B= - and C =--

2' 2 2 

x l 1 x-1 
-----=- --+---
(x+1)(x2+1) 2(x+l) 2x2+1 

I xdx lJ 1 lJ x lJ 1 
(x2 +1)(x+t) =2 (x+l)dx+2 x2+ldx-2 l+x2 dx 

= _!_ log(x + 1) + _!_ log(x2 + 1)-_!_tan- 1 x + C . 
2 4 2 

= _!_ log(x + 1) + _!_ log(x2 + 1) _ _!_tan-1 x + C 
2 4 2 

4_ J 3x + 5 dx, 

x 3 +x2 +x+l 

J 3x+5 3x+5 

x
3

+x
2

+x+1 (x+l)(x - 1)2 

3x + 5 A B C 
-----=- + - + - - -
(x+l)(x-1)2 x+l x-1 (x-1)2 

3x+5 =A(x-1)
2 
+B(x-I)(x+I) + C(x+l) 

=A(x
2 - 2x+l)+n(x2 -i)+c(x+l) 

3x+ 5 =(A+ B)x2 +(-2A +C)x+(A +B+C) 

Factoring the denominator, 

we have 

x 3 +x2 +x+l 

=x3 +1-x2-x 

= ( X + 1) (x 2 - X + 1)-X ( X + 1) 

=(x + l){x2 -x+ 1- x) 

-=(x+l){x2-2x + l) 

Equating the coefficient ofx, x 2 and constant terms on both sides, we get, 

A+B=O 

- 2A + C = 3 

A+B+C=5 

On solving these equation we get, 

., 

integration 
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1 1 
A = - B = -- and C = 4 

2' 2 

J 3x + 5 dx=!J_l_dx_!J_l_dx+ 4J l dx 
x3 +x2 - x + l 2 x+l 2 x-1 (1-x)2 

= .!.tog(x + 1)-! log(x-1)-_i._+ C 
2 2 x - 1 

= ! log (x + l) 4 + C 
2 (x-1) (x-1) 

5. J cosx . d.x 
(1-sinx )(2+ sinx) 

Let I= I cosx dx 
(1-sinx )(2 + sinx) 

Putting sin x = t, then cos xdx = dt 

Now, 

or 

I dt 
.: . I = ( 1 :- t) ( 2 + t) dx 

1 A B - ---=- -+--
(1-t)(2+t) (1-t) (2+t) 

1=A(2+ t)+B(1-t) 

l = {2A + B) + ( A - B )t 
Equating the coefficient oft and constant terms on both sides, we get, 

A - B = 0 and 2A + B = l 
on solving these equation we get, 

1 l 
A= - B=-

3' 3 

I dt _ _!f dt +.!.f~t 
(1-t)(2+t) - 3 (1-t) 3 . 2+t 

= -t log(l-t) + jlog(2 + t) + C 

Hence, J( . c)(x . ) = _! log(l-sinx ) + !tog(2 + sinx) + C 
1-smx 2+smx 3 3 



7. 

Let 

Putting x 2 = t, so that 2 xdx = dt 

Now, 

or 

. I-J dt 
.. - (t+l)(t+3) 

1 A B ----=--+- -. (t+l)(t+3) (t+l) (t+3) 

1 = A( t + 3) + B ( t + 1) 
1 = (A+ B )t + 3A + B 

Equating the coefficient oft and constant terms on both sides, we get, 

A+ B = 0 and 3A + B = 1 

on solving these equation we get, 

1 1 
A=- B=--

2' 2 

I dt 1 J dt 1 J 1 
(t+t)(t+3) =2 (t+l) - 2 (t+3) 

1 1 = 
2 

log(t+ 1)-2 log(t+ 3)+ C 

Hence, I( )( ) =~log(x
2 +1)-!1og(x2 +3)+c 

x 2 + 1 x 2 + 3 2 2 

I dx I sinxdx 
x 2 +2x+10 = cos2 x-Scosx+4 

Let I= J sinxdx dx 
cos2 x -5cosx + 4 

Putting cosx = t, so that - sin xdx = dt 

1--I dt 
- t2 -5t+ 4 

I dt 
=- (t - 4)(t-1) 

Now, 

1 A B 
---,----,--,---,--- = --+ --
( t - 4) ( t -1) (t-1) (t-4) 

Integration 
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or 1 = A(t-4)+B(t - 1) 

1=(A +B)t-(4A-B) 

Equating the coefficient oft and constant terms on both the sides, we get, 

A + B = 0 and -4A - B = 1 

On solving these equation we get, 

1 1 
A =- -, B =+-

3 3 

J dt j 1 J ldt 1 J 1 dt ] 
(t - 4)(1-1) = l-3 (1-1) +3 (t - 4) 

1 f dt 1 f dt 
=3 (t-1) - 3 (t-4) 

= .!_ log(t-1) _.!_ log(t - 4) + C 
3 3 

Hence, . J sinxdx 1 ( 1 
2 

= - log cosx -1) - - log( cosx - 4) + C 
COS X - 5 COS X + 4 3 3 

S. J sinx ~sin2x 

·s dx s dx Let / - - - - - -
sinx + sin2x smx + 2smxcosx 

= J 1 dx = J sinx dx 
sinx(l + 2cosx) sin2 x(l + 2cosx) 

J sinxdx 
= (1 -cos2 x )(1 + 2cosx) 

Putting cosx = t, so that - sin xdx = dt 

Now, 

or 

or 

:. I~-J (1-t2)~1+2t) 

1 A B C - - --- =-- +- -+--(1 -12) (1 + 2t) (1+2t) (1-t) {l + t) 

1 = A(l-t2
) + B(l + 2t)(1 + t)+ C(l- t)(l + it) 

1 =(A + B+ C)+(3B+ C)t+ (-A +2B-2C)t2 

Equating the coefficient oft 2, t and constant terms on both the sides, we get, 



-A +2B-2C =0, 3B+C =0 and A +B+C = 1 

on solving these equation we get, 

A= i, B = .!_ C = _.!_ 
3 6' 2 

I J dt {4 J dt 1 J 1 dt 1 J 1 dt ] 
= (1-12)(1+2t) = 3 (1+2t) +6 .(1-t)-2 {l+t) 

4 J dt l J 1 dt 1 J 1 dt 
= -3 ( 1 + 2t) + 6 ( 1 - t) + 2 ( 1 + t) 

42 1 1 1 = - 3 x 2 log( 1 + 2t) + 61og( 1 - t) + 
2 

( 1 + t) + C 

= -~log{l +2t) + ilog(l-t) + 1(1 + t)+ C 

Hence, J . dx_ = -~ log(l + 2cosx) + ! log(l-cosx) + !(1 + cosx) + C 
smx+sm2x 3 6 2 

9. J cosx dx 
4-sin2 

X 

Let 

Now, 

I= J cosx dx 
4-sin2 

X 

Putting sinx = t, so that cos xdx = dt 

:. I= J dt 2 
4-t 

1 A B 
--=- -+--
4-t2 (2-t) (2+ t) 

m l=A~+D+B~-D 

or l=(A-B)t+(2A+2B) 

Equating the coefficient of t and constant terms on both the sides, we get, 

A - B = 0, 2A + 2B = 1 

on solving these equation we get, 

A=.!_ B=.!_ 
4' 4 

f dt 1 f dt 1 J dt 
:. 4-t2 =4 2-t +4 (2+t) 

Integration 
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1 1 
= - 41og(2- t)+ 4 tog(2 + t) + C 

Hence, J ~s~ dx = _.!_ log(2-sinx) +.!_ log(2+sinx) + C 
4-Slll X 4 4 

or J cosx 11 (2+ sinx) C --- =-og - - + 
4-sin2 

X 4 2-sinX 

10. J secx dx 
1 +cosecx 

Let I = f secx dx = f sinx dx 
l+cosecx cosx{sinx+l) 

= J sinx cosx _ dx 
cos2 x{l + sinx) 

Putting sinx = t, so that cos xdx = dt 

I_ f ldl f ldt 
- (1-12)(1+1) (l-t)(l+1)

2 

Now, 

1 A B C 
----- = - -+--+--
(l - 1)(1+1)2 (t-1) (l+t) (1+1)2. 

or l=A(l+1)2 
+B(l-t)(l+t)+C(l-1) 

or l=A(1+2t+12)+B(1-t2)+C(1-t) 

t= (A+ B+ C)(2A - C)1+(A - B)12 

Equating the coefficient of t 2, I and constant terms on both the sides, we get, 

A-B=~ 2A-C=i A+B+C=O 

on solving these equation we get, 

1 1 1 
A = 4, B=4, C=-2 

f di f 1 di 1 f dt f 1 dt 
: . (1-t)(1+t)2 = 4 (1-t) +4 (1+1)- 2(I+t)2 

1 1 1 
=-

4
log(l - t)+ 4log(l+t)+ 2(l+t) +C 

1 (1 + 1) 1 = - log__;__--'- + - -+ C 
4 (1-t) 2(1+t) 



1 l ( 1 + sinx) 1 
=- og-- -+--- +C 

4 (1-sinx) 2(1 + sinx) 

I secx dx I 
1 

( 1 + sinx) 1 
=- Og--'---~+ - - -+C 

1 + cosecx 4 (1-sinx) 2(1 + sinx) 

Evaluate the following : 

Q.1.: J dx 
x2 +2x+IO 

(x3 +2)dx 
Q.4 :J 2 

(x-2) (x-1) 

dx 
Q.16.: J--

l+cos2 x 

Q.19.: I~dx 
cos3x 

EXERCISE 6.1 

Q S . J ( 3x -1) dx 
· ·· (x-IXx-2)(x-3) 

Q. 3.: J dx 2 
1-x-x 

. J(x2 
+x+l)dx 

Q. 6.. 2( ) 
X x+2 

Q. 9.: J l dx 
x(x4 -1) 
· 5x 

Q. 12.: J ( ) dx 
. (x+l)x2-4 

dx 
Q.15.: J- - -

1+3ex +2eh 

Q. 17.: J cos;dx Q. lS.: J cosxdx 
(1-sinx) (2+sinx) ✓4-sin2 x 

Q. 20.: J dx 
2-3cos2x 

ANSWERS 

(1) jtan-1
-x; 1 

+ C (2) f log(x-1)+ 11og(x-2)+ 
1
~ log(x +2) +C 

I I ✓5+2x+l C (4) 1 (x-2)4 2 5 C (3) - og~-- + og_,____. __ +--- -+ 
✓5 ✓5-2x-l (x-1)3 x-2 (x-2)2 

(5) log(x-1)-51og(x-2)+ 4log(x-3)+ C 

x3 
(7) --x+ tan- 1 x+C 

3 
I x 4 -1 

(9) · -log--+C 
4 x 4 

(10) 
1 x 4 

(11) - log-
4
- + C 

4 x +I 

Integration 
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(12) ~log(x+l)-~log(x+2)+2-+~log(x-2)+C (13) log( ff-l)+c 
3 2 606 ex 

(14) log{tt +✓e2:x + a2 }+C(IS) 1.I e-'(l + e-'~j + C(l6) ~ tan-1( tan:)+c . 1 (1 + 2ex) v2 v2 

(17) --
1 

log(sinx-1)- (. 
1 

) + 
1 

2 
+I_log(sinx+2)+C 

27 9 smx-1 6(sinx-1) 27 

(18) sin -i(sinx) + C (19) - 1-10{ 1 + ✓3 tanx) + C (20) - 1-.Iog ✓5 tanx - l + C 
2 2✓3 1-✓3 tanx 2✓5 ✓5 tanx + 1 

3.7 INTEGRATION OF RATIONAL AND IRRATIONAL ALGEBRAIC 
FUNCTIONS 

(a) Integration of rational algebraic functions. : 

In earlier sections we have integrated some rational algebraic functions by using 
partial fractions. However, here some more important integration of rational algebraic 
functions have been illustrated -

(1) J l dx ar2 +bx+ c 
To evaluate the above integral we first write ax 2 + bx + c in the form of standard · 
integrals. 

b2 b2 
Now, J(ar2 + bx+c)dx =ax2 + bx+-+ c--

4a 4a 

=a(x2 +E.x+ b\)+ 4ac-b
2 

a 4a 4a 

=a x +-x+- +---
( 

2 b b
2 

) 4ac-b
2 

2a 4a2 4a 

=a [ (,+ :.r + 4a:b'] 

=a[(,+;J +{J¥r] 

http:1_log.J5


1 1 - 1 X = - x-tan -

X=x+-b 
2a 

Where ✓4ac- b2 
A= 

4a2 

a A A 

=_l_x 1a tan-I (x+t) +C 

a ✓4ac-b2 ✓4ac-b2 /2a 
2 _1 2ax+ b C = tan -;::=== + 

.J 4ac - b2 .J 4ac - b2 

Case II : When b2 > 4ac, then 

3 
(2) J X +X dx 

x4 -16 

1 J d.x 
=~ xi _,42 

1 1 X-A 
= -x-log- -+C 

a 2A X +A 

Where 

b 
X=x+-

2a 

A = ✓b' + 4ac 
. 4a2 

b ✓b2 -4ac 
1 2 x+-

= - x a log 2a 2a + C 
a 2x.Jb2 -4ac b ✓b2 -4ac 

x+-+ - - -
2a 2a 

1 l 2x + b - .J b
2 

- 4ac C 
== -;=== og----=== + 

.J b2 
- 4ac 2x + b+ .J b2 -4ac 

3 
Let, I=Jx +x dx 

x 4 -16 
3 

=I X dx+J X dx 
x4 -16 x4 -16 

11 +12 (say) 

Integration 

Sdfla,tngt1onoJMqtmq1 
lJ1. 
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(3) 

We have, 
x3 

11 =J--dx 
x4 + 16 

Putting x 4 -16 = t 

4x3dx = dt 

and 

Let, 

: . 11 = ¾J~' 
1 

=-logt+C1 4 

= ¼log(x4 -16) + C1 

or x 3dx = !..dt 
4 

/ -J x 2 
- x4 -16 

Putting X 
2 = i 

2xdx=dt 

/- lJ x - 2 t 2 -16 
1 1 t-4 

= - x - -log- -+C2 2 2x4 t+4 

l x 2 -4 
=-log- -+C2 

16 x 2 + 4 

1 ( 2 :\ 1 x
2 
-4 

:.l=I1 +J2 =4Iog x -16/+
16

Iogx2 +
4

+C 

x
3 

+ x 1 ( ) 1 x
2 

- 4 l=f 4 dx=-log x2 -16 +-log 2 +C 
X +16 4 16 X + 4 

x 2dx 
I = J-x-4 _+_x_2 -+-1 

=J dx 
x2 +1+-;­

x 

=!J 2dx 

2 xi+ 1+ ~ 
X 

(I--
1 

+1+ -
1 )dx 

=! J x2 xi 

2 xi+ -;- + 1 
X 

1 
xdx =-dt 

2 



Now, 

X ' 

. . . (1) 

1 
Putting x+ - = t 

X 

(1- x
1
2 )dx =dt 

/nJegration 

Sdf!rrrtrrdrr{ M..,;.J 
w. 
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Now, 

1 

Let I = J-4-1 - dx = J x 2 1 dx 
X +1 X2 + -

2 

=!J x2 dx 
2 2 1 x+­

x2 

X2 

(1+-¼--1 + -
1-J 

1 X x 2 

=2J 2 1 dx 
x+­

x2 

n . 1 rutting x-- = I 
X 

( 1 + x
1
2 ) dx = dt 



(S) 

or 
P 

. l 
utting x + - = t 

X 

/ 1 ) ll-x2 dx = dt 

Substituting / 1 and / 2 in ( 1) we get, 

I _ I l dx _ 1 [ 1 -1[x2 -lJ] C - -- -- -tan -- + 1 
x 4 +1 2 ✓2 ✓2.x 

I[ 1 l x2 -✓h+l] IC 
-2 2✓2 og x2 + ..fi.x + 1 - 2 2 

. 1 -i[x2 -•J 1 1 x
2 
-&+"i C 

= 2✓2 tan ✓2.x - 4✓2 og x 2 + .J2x + 1 + 

J 1 dx 
x 4 +x2 +1 

Let I= J 4 dx2 
X +x + 1 

1 

= I x2 i dx 
xi+ 1 + 2 

X 

2 

=.!. J x2 dx 
2 x2 +---;-+ 1 

X 

(
1 + _l -1 + _l) 

= 1 x2 x2 dx 

2 x2 +~+ 1 
X 

( Where C= ~C1 - ~C2 ) 

Integration 

Sd/'-lfL'llrHf1W'"'Y M111eripl 
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Pu 
. 1 tting x-- = t 

Now, X 

:. (1 + x
1
2 )dx = dt 

or 

1 
1 x+ - -l 1 · x 2 -x+l 

=-log 1 +C2 = - log 2 +C2 
2 x+ - +l 2 x -x+l 

X 

Substituting JI and/ 2 in ( 1) we get, 



. (6) 

Let 

(7) 

Putting x2 = t 
2xdx =dx 

xdx= dt 
2 

Integration 

SdflnsfrHctional Mlllerlql 
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Let I= f 3x2 dx Putting X 
3 = t 

(x3)2 + 1 3x2dx = dt 

f dt 
= t2 + 1 

= tan- 1+ C 

=tan- 1 x 3 +C 

(8) 
J 2x2 +~x+5 

Let 1-!J dx 
- 2 2 3 5 

X +-x+-
2 2 

I J dx Putting 
3 

x+-=t 

=2 ( 3J (✓31J 
4 

:. dx =dt x+- + -
4 4 

1 4 -I } 
= -x -tan +C 

2 ✓31 (!¼)2 
= - 2- tan_1 4(x +3/4) + C 

-./31 -5f 
2 _1 4x+3 C 

= - tan + ..fil ✓31 

(9) J 5x-2 
1+2x+3x2 

Let J (5x-2) dx /-
- 1+2x+3x2 

= sf (x-2/S)dx 
1+2x + 3x2 

(6x-12) 
5 J 5 dx 

= 6 I +2x +3x2 

( 6x+2-2-
12

) 
_Sf 5 dx 
-6 1+2x+3x2 

S.df::l,utr,u:tiona/ Mlltm41 

ill 



or, 

Now, 

And 

22 
5s (6x+2)dt s s s 1 

= 6 1 + 2x + 3x2 -6 - I+ 2x + 3x2 dx 

=~J (6x+2) dx-!.!J dx 
6 I+ 2x + 3x2 3 3x2 + 2x + I 
5 11 

=-11 --12 
6 3 

.. . ( ! ) 

/~ ~J (6x+2) dx 
1 + 2x + 3x2 Putting 1 + 2x + 3x2 = t 

( 2 + 6x )<ix = dt 

Integration 

SdflffrYP1t#tenel Mlfkd41 
m 
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(10) 

Solution : Let x = t6 

(11) J dx 
2+cosx 

:. dx =6t5dt 

dx 6t5 6t5 

:. Jx½-x½ =J,2(1-t)dt=J(l-t)dt 

= J 6(-12 
-i-1+ l~t)dt 

6t2 6t2 

=-----6log(1-t)+C 
3 2 

=-2x½-3x½-610{1-x¼) +c 

Solution : J dx - J dx 
2+cosx - 2+cos2 ½-sin2 ½ 

dx 

= J (2+ 1)cos2 ½ +(2-l)sin2 ½ 

dx sec2½dx 

= J 3cos2 ½ +sin2 ½ = J 3 +tan2 ½ 

_ 2f du 
- 3+ u2 

2 -1 u C =-tan - + 
✓3 ✓3 

- - tan ___,;.,..= + _ 2 -l(tan½] C 
✓3 ✓3 

Pu
. X 

tting tan- = u 
2 



(12) 
x2 

J-dx 
l-x6 

Let 
2 . 

I= I ( ')' dx 1- X 

=f I 1~:2 

1 1 1-t 
= - x-log-+C 

3 2 l+t 

1 1-x3 

=-log--+C 
6 l+x3 

(b) Integration of irrational algebraic functions : 

Putting x3 = t 

3x2dx = dt 

x 2dx = !dt 
3 

In this sections we will find the integration of different forms of irrational algebraic 
functions. Before doing.this, it is most essential to find_ the integrtion of some special 
functions, to get formulae which can be applied directly to integrate many irrational 
algebraic functions. 

(1) J ✓x2 + a2 dxa 

Putting x = atan0 
Let I=J..fx2 +a2 dx 

dx = asec2 9d0 

:. I= J ..f x2 + a2 dx 

= J ,J a2 tan2 0 + a2 
• asec2 0d0 

= a2 I ..jsec2 e sec2 0d9 a 

= a2 J sec0sec2 0d9 

Now taking sec2 0 as second function and integrating 
by parts we get, 

I= a2[sec0 • tane-J sec0tan9tan0d0] 

= a2 (sec0 •tan0-J sec0tan2 0d0] 

= a2 (sec0 •tan0-J sec0( sec2 0- t)de] 

= a2 [sece •tan0-a2 J sec0sec2 0d0 + a2 Jsec0d0] 

= a2 sec0 •tan9-/ + a2/og~0+tan0I+ C1 

a 

Integration 

S,V..l'"'1tC'ien«fMflRW/ 
m 
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2/ 2 .Jx2 +al x l l 4"x' +a' ~ C or =a --- •-+ a o · + 1 a a a a 

=x✓x1 + a2 +a2/o+✓x2 +a1 ,+C 

/ =~.Jx
2 

+a1 + a: •lo++ ✓x1 +a2 j+c 

Wberec ~( C1 -a: loga J 

Putting x = asec9 
dx = asec9 t:an9d9 

= J.Ja2 +sec2 9-a1 •asec9tan9de 

= a1 J .Jtan2 e sece tan9de 

= a2 J sece t:an1 Ode 

=a2 Jsece(sec2-1)de 

I = a2 f secesec1 ed00-a1 f secede 

I = a1 Ii - a2 lo~e + tan0I ... (1) 

Where / 1 = Jsecesec1 ede 

X 

e 
a 

Taking sec2 e as second function and sece as first and integrating by parts we get, 

11 = sec0-t:ane- J sec0taned0 

= sece · t:ane - J sece (sec2 e -1) de 

= sec8 -tane-Jsecesec2 e+ Jsec0de 

= sece -tane - / 1 + log~0+ tan0j 

2/ = sec9 • tane + lo~e + tane[ 
· l 1 · 

11 = - sece -1an0+- 1o~e+tanel 
2 2 

From equation (1) and (2) we get, 

... (2) 

a2 a2 
I = - sece -tane +-lo~0+tan0j-a2 1or,Jsec0 + tanej + a2C1 2 2 



a2 a2 
= -sec8 · tan8 - -lo~c8 + tan8I + a2C1 2 2 , 

2 ~- 2 
x ✓ 2 2 a /✓ 2 2 I a 2 =-· x -a --logx -a +x--loga+a C1 2 2 2 

a2 
Where C = a2C1 - - log a 

2 

Let / = J .Ja2 -x2 dx Putting x = asin8 

:. I= J.Ja2 -a2 sin2 8 (acos0) d0 

or I== J a.JI-sin2 0 •acos0d0 

I= J a.Jcos2 0 • a ·cos0d0 

= a2 J sin0cos8 •d8 . 

a2 
= 2 J2sin8cos0 d0 

a2 . 
=2 Jsm20 d8 

= a2 J cos2 0 d8 

= 0 2 J 1 + ~s20 dG 

a2 a2 
= 2 J d8+ 2 J cos20d8 

a2 a2 sin20 
= - 8+-·--

2 2 2 

a2 a2 
=-8•2sincos8+-8 

4 2 

dx = acos8d0 

...(1) 

Integration 

S,V-In.stnu:qpngl M'llfrlg/ 
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(4) 

(S) 

a2 x ✓a2 -x2 a2
. -1X 

=-·- · +-Sill 
2 a a 2 a 

l 
X I l l a - 1 X 

I =-•va -x +-sin -
2 2 a 

J l dx 
.Jxz + az 

Let l=f 1 dx 
..Jxz + a2 

= J asec
2

0d9 

.Jal tan.2 0 + a2 

J (lsec
2 

0d9 

= p✓tan.2 9 + 1 

=fsec
2 

9d9 
sec9 

= f sec9d8 

= lo~0 +tan~+ C1 

(
.Jx

2 + a2 x] . 
= log a + ; + C 1 

=log( x+ ✓x1 + a 1 )+ ~ 

J 1 dx 
.Jx2 -a2 

Let l=f l dx 
.Jx2 - a2 

= J asec9 tan0d9 

.J a2 sec2 9 - a2 

= J asec0 tan0d9 

a✓sec2 9-1 

= J sec9 f#0d0 
t#.0 

= f sec9d0 

=lo~0+ tan0j+C1 

Putting x = a tan 9 

dx = asec2 9d9 

a 

( Where C = C1- log a ) 

Putting x = a tan 9 

dx = asec9 tan9d9 

X 
.Jx2 - a2 

a 



(6) 

x ,/x' -a
2 

I =log-+ +C1 a a 

J .J 1 
lh=loglx+.Jx2 -a

2
1+c 

x2 -a2 

J 1 dx .Jai -xi 

Let /= 1 dx 
.Jai -xi 

. = J acos9d9 

.Ja2 -a2 sin2 9 

= J acos9d9 

a✓l-sin2 9 

=JU>#0d9 
¢~#0 

=9+C 

. -IX C =sm -+ 
a 

( Where C = Cr- loga) 

Putting x = asin9 

dx =acos9d9 

Note : On applying these standard formulae we can obtain some more formulae which 
are useful and can be applied to evaluate other integrals. 

(7) To find the integral of J .J ax2 + bx+ c 

We have 

Here two cases are shown below : 

Case 1: If 4ac-b2 >0 

Then ax
2 

+ bx+c=a[(x+ !)'+( 4°;/' J] 

=a[(x+ :ar +[ f¥.J] 

Integration 

Self:lmemtien,J Mf#rlll 
lH 
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(8) 

Case 2: If b2 > 4ac 

Then 2 
[( b)

2 

(b2 -4acJ] ax + bx+ c = a x + 
2
a + 

4
a2 

=•[(x+ :s +( ~n 
By substituting x + !!__ = t, so that dx = dt, then the above integral is reduced to 

2a 

the forms- af✓t2 +k2dt Wherek2 = 4ac-b
2 

4a2 

and WhereA2 = b2 -4ac 
4a2 

These integrals can be obtained by the formulae directly mentioned earlier in this 
section. 

f l dx 
✓ax2 + bx+ c 

From the example (7) the given integral can be written as : 

f 1 
dx if 4ac > b2 

{x+ ~)' +( 4~:,b2

J 

and 
f Jx+~)<(b2

-4acJdx 
'\ 2a 4a2 

b 
On putting x + - = t ·and dx = dt 

2a 

then these integrals can be reduced to the form 

1 f dt 
a .J12 + k2 

and 

if b2 > 4ac 

Where k2 = 4ac- b2 
4a2 

Where A2 = b2 
-4ac 

4a2 

~ integrals can be obtained by the formulae mentioned earlier in this section. 

SOLVED EXAMPLES 

(1) f .J 5 + 4x + X 
2 dx 



Integration 

Let I= f✓5+4x+x2 dx 

= J .J 4 + 4x + x 2 + l dx 

= J ✓(x+2)2 
+ 1 dx 

= (x;
2
) ✓(x+2)2 

+1 +~logr+2+ ✓(x+2)2 
+ll+c 

= (x +
2
) ✓x2 + 4x + 5 + ~ log~+2+ ✓x2 + 4x+sj+ C 

2 2 · 

(2) J ✓2+4x+x2 dx 

Let I = J ✓2 + 4x + x 2 dx 

= J ✓ 4 + 4x + x2 -2 dx 

= J✓(x+2)2 
-(Ji)

2 
dx 

= (x;z) ✓(x+2)2-( Ji)' -il++2 +✓(x+2)2 -(JI)'\+ C 

= (x~
2
)
2 
✓2+4x+x2 -logl (x+2)+ ✓x2 +4x+2\+c 

(3) I ✓3+:+x2 
Let I= I dx 

✓x2 +2x+3 

= I dx 
✓x2 +2x+1+2 

= I dx 
✓(x+l)2 +(Ji)2 

= log((x+ I)+ ✓(x+ 1)
2 

+ (Ji)' ) + C 

=log(x+l+ ✓x2 +2x+3) +C 

(4) 
J ✓x2 ::x+l 

SMj-butn,:tiolUII M.lllmlll 
w. 
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Let I=f dx 
.Jx2 +4x+4-3 

= f ✓(x+2)~~ ( ✓:l)' 
= logr + 2 + ✓---< x-+-2 )-2 -+ {-✓3)-3 -, I + C 

= logl(x +2)+ ✓x2 + 4x + 1! + C 

(5) J .J2x-x2 dx 

(6) 

Let I= J .J2x-x2 dx 

= J✓l-1+2x-x2 dx 

= f ✓1-{x2 -2x+l)dx 

J 1 dx 
✓4x-x2 

= J✓l-(x-1)2 
dx 

(
x-1~1 ( l)2 1 . -ix-1 C = - - x- + - sm -+ 

2 2 1 

(
x-1\~2x 2 1 . -1( l) C = -2-r~ -x + 2sm x- + 

Let l=f l dx 
✓4x-x2 

= I 1 dx 
✓4-4+ 4x-x2 

= I 1 dx 
✓4-(x2 - 4x + 4) 

= I 1 dx 
✓4-(x-2)2 

_ 

• _ 1 x - 2 C 
=Slll - + 

2 



3.7.1 INTEGRATION OF f (px+q) ✓ax2 +bx+c dx 

Let I= J(px+ q) ✓ax2 + bx+ c dx . 

We choose constant A and B, such that, 

(px+ q) =A! (ax 2 + bx+ c) +B 

=A(2ax+b)+B 

Comparing the coefficient of x and th~ constant term on both sides, we get -

2aA=p and Ab+B=q 

Solving these we get the values of A and B. 

Thus, the given integral to takes the fomi 

I= AJ(2ax+ b)✓ax2 + bx+ cdx + B✓ax2 + bx+ cdx 

=Al1 +BI2 

Now, / 1 = J(2ax+b)✓ax2 +bx+c dx 

Putting ax2 +bx+ c= t, (2ax + b )dx = dt 

11 =iJ(ax2 +bx+c)½+C1 

Similar' 1 y, 12 = J ✓ax2 + bx+ c dx can be found. 

SOLVED EXAMPLE 

Example 1: Jx.Jt+x-x2 dx · 

Let, x=A[!(l+x-x
2
)]+B 

x=A(1-2x)+B 

Equating the coefficient of x and constant term on both sides, we get 

-2A =l, A+B =0 

On solving these we get, A = _ ! and B = ! thus the given integral takes the fomi 
2 2 

I= Jx.Jt + x-x2dx = -~J(l-2x),j1 +x-x2 dx + ~.Jl + x-x
2 
dx 

1 l 
=--/1 +-12 ... (1) 

2 2 

Integration 

Uf-lfPP'IH'#errel MfllRMl 
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or 

:. 11 =f(t)½dl 

,½ 
11 =½+Ci 

3( 2)½ 11 = 2 l+x-x +C1 

Putting 1 + x-x2 == t 

(1-2.r )dt = dt 

and 12 = f .Ji+x-x
2
dt= f ✓1+2x~+-¾-¾-x2 

=J✓~+-H dx 

= J t ~)'-12 
dt 

3.7.2 INTEGRATION OF f :x+q 
ax +bx+c 

Let 1= f px+q dt 
tU

2 +bx+ c 

We choose constants A and B such that 

Pu 
. l 

tting x--=t 
2 

so that dt = dt 



px+q= A! {ax2 + bx+ c)+B 

px+ q = A(2ax+ b)+ B 

Comparing the coefficient of x and constant terms on both sides, we get 

p=2Aa, Ab+B=q 

On solving these equation we get, 

A =J!...., and B= ( q+ pb) · 
2a 2a 

Putting these values the given integral reduces to -

J=l!....f 2ax+b + f q - bp/2a dx 

2a .J ax2 +bx+ c .J ax2 + bx+ c 

I =1!... . .Jax2 + bx+ c + q - hp J dx 
2a 2a ✓ax2 +bx+ c 

The integral of second term can be easily found by the methods discussed earlier in 
this section. 

SOLVED EXAMPLE 

Example 1: f x+l dx 
✓x2 -x +I 

Let, I = f x + l dx 
✓x2 -x+l 

Choosing constant-A and B such that, 

x+l.=A !(x2 -x+t)+B 

x + I = A( 2x -1) + B 

Comparing the coefficient of x and constant terms on both sides, we get 

2A = 1, - A + B = I 

Solving these we get A = ! , B = l 
2 2 

:. the given integral takes the form 

l=!J 2x-l dx+IJ dx 
2 ✓x2 -x+l 2 ✓x2 - x+l 

=.Jx2 -x+l+~l1 2 

Now for, / 1 = J dx 
✓x2 -x+l 

... (1) 

Integration 

Sdf-llUlnlctio"'fl M'lkd4l 
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= log[(2x-1)+ ,J x2 -x+ 1]~ C~ -log2 

Putting these values of/ 1 in (I) we get, 

l=!-J x2 -x+l+~log[(2x-1)+,./x2 -x+l]+Ic1 -~log2 

2 ,---- 2 .----- 2 2 

=~.J x2 - x+l +~log[(2x-1)+,./ x
2 

-x+l]+c 

Where C = ~( C1 -log) 
2 

( 
. n a r>-1 a ) a + X + ..... + 

3. 7 .3 INTEGRATION OF .,x ~ 1 
" dx 

ax2 +bx+C 

f 
(a0x" + a1x"-1+ ..... +a,,) 

Let I= ~----;::= = =---'-dx 
✓ax2 + bx+c 

=(CoX"-1 +C1x"-2+ ... +C11_1).Jax2 +bx+c+C,,f I dx 
vax2 +bx+ c 

When CO, C 1 ... C II are constants to be determined, 

Differentiating both sides and multiplying by ✓..-ax_2_+_b_x_+_c , we get 

n 11- 1 n- 2 [( l)c 11-2 ' ( 2)C 1t--3 C ] a0x + a1x + a2x ... +a,,= n- 0x + n- 1x + ... + 11_2 

( ax2 + bx+ c) + (c0x"-1 + C1x"-2+ .. . C11_1)( ax; b )+ C,, 

Equating the coefficient of like powers of x, and constant terms, we can easily find the 
values of constants C0 ,C1 ••• C,, and thus the integral can be evaluated as earlier. 



SOLVED EXAMPLE 

Example 1: 

Let ... (1) 

Differentiating both sides with respect to x, we get-

--;:x2=+=2x=+=3 I 2 ( ) I (2x + 1) C2 =C0 vx +x+l + C0x+C1 - --;:====+---;==== 
✓x2 +x+l .----- 2 .Jx

2
+x+l ✓x2 +x+1 

Multiplying above equation by ✓x2 + x + 1, we get 

x2 + 2x + 3=C0 (x2 +x + t) + ~( C0x +C1)(2x-1) +C2 

2 2 1 1 1 
=C0 x +C0x+C0 +C0 x +- C0x+-C1x+-C1 +C2 2 2 2 

2 3 I 
=2C0 x + - CQX+C1x+C0 + - C1 +C2 2 2 

x
2 

+ 2x +3 =2Co x
2 

+(~co +C1 }+Co+ icl +C2 

Equating the coefficient of like powers of x and constants ~ on both sides we get, 

3 I 
2Co=l. -Co +C1 =2, Co+-C1 +C2 =3 

2 2 

On solving these equations we get 

C I C 5 C2-- ~ 
0 =2· 1 =4, 8 

Putting the values of C0, C1 and C2 in (1) we get, 

Jx2+2x+3 dx=(!x+ ~).Jx2+x+l+l5J dx 

.Jx
2

+x+l 
2 4 ,----

8 
.Jx

2
+x+l 

=!(2x+s).Jx2+x+l+ 
15

11 4 8 

.. . (1) 

.. . (2) 

Now, 

Integral ion 
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=I : (-'¾)' (x+ ½) + 3 4 

=log(x+ ½)+ (x+ ½)2 +(✓¾)' +C1 

=log{(2x+I)+ ✓x2 +x+t}+C2 C2 =C1 -log2 

Putting this in (2) we get, 

f x2 +2x+3 dx=!(2x+s)✓x2 +x+l 
✓x1 +x+l 4 

+¥logl(2x + 1)+ ✓x2 
+x+ 11 + ¥c2 

=~(2x+s)✓x2 
+x+l+ 

1;1og~2x+l)+ ✓x2 +x+ll+c, 

15 
Where C =-C2 8 

3. 7 .4 INTEGRATION OF 
1 a * 0, p :1- 0 

(px +q)' ✓ax2 +bx+ c' 

Let I= I dx 
(px+ qy ✓ax2 + bx+ c 

Putting px + q = .!. , px + q > 0, so !hat pdx = --;-dz and x = (.!. -q)p 
z z z 

:. I = _ __!_ . I dz 

P 2 - r (I )2/ 2 b(l )/ z •z a ;-q p + 2-q / p+c 

Which after simplification takes the form 
r-1 dz 

I = -f : which can be eaily evaluated. 
Az +Bz+C 

SOLVED EXAMPLE 

Example 1: 

Let ... (1) 



· V l ( 1 ) (1 + z) Puttmg x -1 = / z, , so that dx = -7 dz and x = ; + 1 = -
2
-

=-J z dz 
✓2z2 +2z + 1 

Choosing constant A and B, such that 

-z =A! (2z
2 

+2z+ i)+B 

or -z=A(4z+2)+B 

-z =4Az+2A +B 

Comparing the coefficient of z and the constant terms on both sides, we get 

4A=-i 2A+B=0 

On solving these equation. we get A= _ _!_ and B = _ _!. 
4 2 

. -J z dz __ _!_J (4z+2)dz _ _!.J dz 

· · ✓2z2 + 2z + 1 - 4 ✓2z2 + 2z + 1 2 ✓2z2 + 2z + 1 

=-'!:.. . .J2z2 +2z+l--
1-J dz 

4 ,---- - 2✓2 ✓z2 + z + ½ 
1 .J 2 1 =--· 2z +2z+l+ ~/1 ... (1) 
2 2v2 

Now, 11 = I dz 
.Jz2 

+z+ ½ 
= I dz 

✓(z+ ½)2 + ¼ 

;Jog{z+ ½)+✓(z+ ½)2 + ¼l+C1 

; 1ofz2+l)+ ✓(,' +z+ YJl+C1 

Integration 

Selflnrtrr«1ienefMqt,qial 
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= log~2z + 1) + 2.J(z2 + z + ½)j + C2 

Where C2 =(C1 -log2) 
Putting these value of 11 in (2), we get 

or 

-f z dz = _!.✓2z2 +2z+ 1 
✓_2z2 +2z+ 1 2 

· + 
2
~log~2z+l)+2.J(z2 

+z+ ½)j.+ 
2
~ xC2 

-f z dz =-!,.J2z2 +2z+l 
✓2z2 +2z+ 1 2 

+ 
2
~ log,(2z+ l)+2.J(z

2 
+ z+ ½)!+ C 

1 
WhereC= ~C2 

2-v2 

Replacing z by ( 
1 

/ we get 
x-l 

f dx =-! 2(-1 )2 +2(-1 )+1 
(x-t) 2 .Jx2 +l 2 x-1 x-1 

= 

+ 
1
~ logh(-

1 
+ 1) + 2 

2-v2 r x-1 

1,/2+2(x-l)+(x-1)
2 

2 (x-1) 

- +-+-+C ( 
1 )

2 
1 1 

x-1 x-1 2 

1 2+2(x-l) ..Jt+(x-1)+ ½(x-1)
2 

+ ~ log ( ) + 2 ( ) + C 2-v2 x-1 x-1 

l ✓x2 +1 1 ~ ~~ 1 == -- ( ) + ~ lo + -v2 x + 1 + ~ log!( x -1 ~ + C 
2 X -1 2-v2 2-v2 

f dx l ✓x2 +1 1 ft ~✓x9 1 
:. 

2
~ =- ( ) + r,. log +-v2 x

2 + 1 - ~ logl(x-1)1+ C 
(x-1) x 2 +l 2 x-1 2-v2 2-v2 



3. 7 .5 INTEGRATION OF J 1 

( ax 2 + b) .Jex 2 + e 

Let I=J dx 
(ax2 + b)✓cx2 + e 

Pu 
. 1 

ttmgx=-, 
I 

I 
So that dx =--di 

12 

l=f (-J/t2)dt 
(a/ 12 + b)✓(e/ 12 + e) 
I 1d1 

lJ dz --- ----dz 
- e bz2 -ae+ be 

= J z' +(!t) 
I I dz 

=-b z2 +k2 

= _.!. X .!. tan -l ..:. + C 
b k k 

1 1 z-k 
=--x-log--+C 

b 2k z+k 

Putting e + el2 = z 2
, 

: . e1d1 =2zdz 

1dt = !._dz 
e 

If ae > be 

If ae < be 

Now replacing z by t and I by x, we get the required integral. 

Integration 

Uf-!rr&rtcfleMI Mlllmlll 
m 
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Example 1.: 

Let 

I~ -f (if,2 -1) ,jl(t'+ I 
tdt ' 

tdz 

==-J I-{z2 -I)xt 
dz --J 2 - 1-z +l 

dz 
= J ----=--2 

z -2 

l z-✓2 +C 
= ~log ~

2 2v2 z+vL, 

1 ~-✓2+C 
- - log r-----;; ~ 
- 2✓2 -vl+t2 +v2 

~-✓2 
__ l_log-~f~ -,-= ~~- - + C 

- z,12 ✓I+ :
2 
+✓2 

1 . ~-✓2x +C 
- -log ~ ~ 
-2✓2 -vx2 +l+v2x 

I 
Putting X = -

t 

1 
dx=-zdt 

t 

2 2 Again putting l + t == z 

2tdt =2zdz 

:. tdt =zdz 



= ✓2 log~ -.fi.x +C 
4 .Jx2 + l + .fi.x 

3.7.6 INTEGRATION OF xm(a +bxn)P 

Where m, n and p are not necessarily integers. 

Let x"'(a+bx")P dx 

Case I: If pis a possitive integer ~en applying binomial theorem for (a+ bx" )P 
and this integration can be found. 

Case II: If (m + n )/nis an integer and p = r/s. In this case we take a+ bx" = 19,so 

I s J (''-a]k FtJ-ld =- -- ·t t 
bn b 

m 
Wherek =-

n 

Now expanding ( I' ~a)' by binomial theorem, the integral can be 

obtained. 

Case m: If p+'(m + I)/n is an integer and pis not an integer. In this case we 

put x = ½, then the integral is reduces to the case II and consequently the required 

integral is obtained. 

SOLVED EXAMPLES 

Eumple 1: f 3(1 +3 r dt 

Let J:Jxi(1+3r"' 
Expanding ( I + x¼) 4 

by binomial theorem, we get -

I( 3 1 I ] 
I = J x 2 x + 4x 4 + 6x 2 + 4x 4 + I dx 

= J x 2 + 4x 4 + 6x + 4x 4 + x 2 dx ( 
3 S 3 1] 

Integrat1 

S,V-lrutructionaJ Mldmal 
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Example 2 : J x 1 (1 + x8)½ dx 

Let / = J x 1 (1 + x 8)½ dx 

H 7 8 ½ d m+I 7+1 2, hih . . ence, m = , n = , p = 3 an -n- = -
8
- = w c IS an mteger. 

Putting 1 + x 8 = u3 

8x 7 dx = 3u 1 du 

I =IJ u2
(u

3)½ du 

=i J u4 -du 

3 u5 

=-·-+C 
8 5 
3 5 

=--u +C 
40 

I=~ (1+x8)½ +C 

Jx1 (1+x 8) ½ dx = ! (1+x8)½ +C 

Example 3: J x-6 (1 + x 2)½ dx 

Let I = Jx-6(l+x2)½dx 

-6 2, ½ m+l -6+1 I 2, hi h. . Here, m = , n = p = 2 and --+ p = - - + - = - w c IS an mteger 
2 2 2 

then 

Putting X = -x so that dx = (-Y,2 )dt 

1 =Jt'-(1+ Y,2 l(-Y,2 )a, 



= - f t3 -(t2 + 1)½ ·dt 

=-f t 2 ·t(t2 + 1)½ ·dt 

:. 1=-f (z2 -1) (z2)½ •zdz 

=-f(z2 -1) (z2)-dz 

=f (z2 - z4) ·dz 
z 3 zs 

=- --+C 
3 5 

Putting t2 + 1 = z2 

2tdt =2zdz 

(12 + 1)½ (12 + 1)½ 
---'- - ---'----- - + C 

3 · 5 

(_1 + 1)½ . (-1 + 1)½ 
1 x2 x2 

= - __:..___ c.__ - --'---'---- + C 
3 3 5 

3.7.7 INTEGRATION OF t{x,(ax+b)Ym,(ax +b)Y,,} 

To integrate a function of this type, we make the substitute ax+ b = tP, where pis 

the lowest common multiple of m and n. In this way the integrand is red~ced to a 
rational function. 

Example 1: 

Let :. l.c.m. of 2 and 3 =6 

Sdf-ltutrucdonpJMqterlgl 
m 
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6 
Putting 1 + X = t 

= f (18 + t 7 + t6 + ts + 14 + 13) dt 

t 9 !8 t 7 /6 t5 t4 
=-+-+ - + - + -+ -+C 

9 8 7 6 5 4 

dx =615dt 

=!(l+x)½ +!(l+x)½ +!(l+x)¾ +!(1+x)+!(1+x)¾ 
9 8 7 6 5 

+!(l+x)½ +C 
4 

3.7.8 INTEGRATION BY RATIONALISATION 

Integration of f dx 
.Jx+a+.Jx+b 

Let I - f . dx 
- .Jx+a+.Jx+b 

Multiplying the numerator and denominator by .J x + a - .J x + b, we have 

l=f .fm-.Ji+b dx 
.Jx+a+.Jx+b 

=f -lm-✓x+b dx 
· (a-b) 

= (a~b)f (.Jx+a-Jx+b}dx 

= 1 ((x+ a)½_ (x+ b)½]+ C 
(a - b) ½ ½ 



Example 1: I 1 dx 
✓x-.Jl+x 

Let I= l dx 
✓x -✓1 +x 

Multiplying the numerator and denominator by ( ✓x + 9, we get 

l=J ✓x+..fltt dx 
x - (l+x) 

= I ✓x + ✓l + X dx 

EXERCISE 7.2 

Integrate the following functions : 

Q.1.: ✓4-3x-2x2 Q. 2.: .Jx2 -2x-5 

Q. 4.: .J1-4x2 Q. 5.: .Jx2 +3x 

Q. 7.: (x+ 3)✓3-4x-x2 Q. 8.: 
1 

✓3-4x-2x2 

1 
Q. 11.: 

2x+5 
Q. 10.: 

.J(x-a) (x-~) ✓x2 +3x+ 1 

2x2 +3 1 
Q.13.: 

✓3-2x-x2 
Q. 14.: 

(x-1)✓ (1-x2) 

Q. 16.: x2(l+x 3)½ Q. 17.: x(l +x3)½ 

X (1 +X) 
Q. 19,: ½ ½ Q, 20.: X ( ) 

(l +x) 3 -(l +x) 2 1-x 

ANSWERS 

(1) !( 4x + 3)·(4-3x-2x2) + 41✓2 sin-1(4x-3J+ C 
8 92 ./41 

Q. 3.: ✓9 -x2 

Q. 6.: x.Jl +x-x2 

Q. 9.: 
1 

.J2 + x-3x2 

l+x 
Q. 12.: .J 

x 2 -x+ 1 

1 

Q. 15.: (1 + x2)✓ (x2 -1) 

1 
Q. 18.: . 

(x -3)✓ (x + 1) 

Integration 

Seff-InstnlClioNuMllterial 

' J.11. 



liusiness Mathematics 

Sdf-!NtnH1fmMI MIIJJ!rUJ 
ill 

(2) 

(3) 

(4) 

(5) 

(6) 

(x ;
2
) ✓x2 + 4x-5 -ilogl(x+2)+ ✓x2 + 4x -51 + C 

!x.J9-x2 + 2sin-1 ~ + C 
2 2 3 

.!_sin-1 2x+!x✓l-4x2 +C 
4 2 

2x + 3 ✓x2 +3x -~loglx + ~+ ✓x2 +3xl + C 
4 8 2 

_!(1 + x-x2)½ + !(2x-1)✓1 + x-x2 + 2-sin-1 (2x-l) + C 
3 8 16 ✓5 

(7) 1 ( 3 4 2)½ 7 . _1 ( x + 2) ( 2) .J3 -4x -x
2 

C -- - x-x +-sm + x+ + 
3 2 ~ 2 

(8) 1 . -I (x-1)✓2 C 
- .Jism 5 + 

(9) 
1 . _ 1 ( 6x -1) C 

- .jjsm 5 + 

(11) 2✓x 2 + 3x + 1 + 2logl(2x + 3)-.J(2x + 3)2 -51 + C 

(13) (3-x)✓3-2x-x2 +sm-1(x;l) +c 

(15) - 1- tog x✓2 + ~ + C 
2✓2 x✓2-✓x2 -1 

(17) 

(18) 

(19) 

(20) 

(14) 

(16) 

. ( 1-x)½ 3 - +C 
l+x 

(1 + x3) 1/3 
Wheret=--­

x 



3.8 INTEGRATION OF TRANSCENDENTAL FUNCTION 

The functions other than aJgebraic are called transcendental function. These include, 
trigonometric, functions defined in special ways, we will study the integration of these 
functions one by one. 

3.8.1 INTEGRATION OF TRIGONOMETRIC FUNCTION 

(a) J 1 dx 
a+ bcosx 

(a * ±b) 

Here, two case arise 

Case I : If a > b, then putting .Ja- b tan~= u 
2 

1 ,---; 2 X 
- va-bfiee - dx=du 
2 2 

So that the given integral takes the form, 

/- 1 J 2du 
- .J a-b (a + b) + u2 

Case II : If a < b, then we have 

lntegraJion 

Stlf=.ln.rtnH;don4'Mll#rW 
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(b) 

1 sec2 ½ dx 

I= ,/a-bf tan'xl -(b+a)1 
12 b-a 

= 2 x l lo u-J§ 
(b-a) 2.Jb+a u+.Jb+a 

b-a b-a 

= 1 log 2 
[
-lb-a tan~ -✓b+ai 

✓b2 
- a

2 ✓b-a tan~+ ✓b+ a 

J 1 dx 
a+bsinx 

(a:t:±b) 

Let I= f dx 
a+bsinx 

Pu
. X 

tting tan- = u 
2 

1 2 X 
:.-sec - dx = du 

2 2 

= J dx 

a+ b[ 2 tan½x] 

:. sin2x = 2tanx 
1 + tan2 

X 

1 + tan2 
-
2 

(1 + tan
2 ½)dx 

=fa (1 + tan2 ½) + 2b tan½ 
sec2 ½ dx 

= J a+ a tan2 ½_ +2b tan½ 

f 2du 
= a+ a u2 +2bu 

Putting 

:. lsec2 ½ dx = du 

sec2 ½ dx = 2du 

http:Mathemati.cs


a 

=~J-2 ___ b_d_u_b2 __ b_2_ 

u +2x-u+--- +1 
a a 2 a 2 

Here, tw~ case arise 

Case I: If a< b, then putting a2 -b2 < 0 then we have, 

Case II: 

or 

Integration 

Self-lnstrHctionol Mlllmf! 
m 
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SOLVED EXAMPLES 

(1) J dx 
5 + 4cosx 

Let I f dx 
5 +4cosx 

1-tan2x/ 
·: cos2x = 12 

1+ tan
2 ½ 

sec
2
½dx -J 2 

- 9+ tan2½ 

Putting tan½ = u 

. 1 2x/ dx d .. 2sec / 2 = u 

== 2du == 2 x _!_tan-l~+C 
9 + u2 3 3 

(2) J dx 
4 + 5sinx 

Let I == f dx 
4 + 5sinx 



sec
2½ dx 

= I 4+4tan2 ½ + lOtan½ 

1 sec2 ½ dx 

=4J tan2½ + I¾ tan½+ I 

·: sin2x = 2 tanx 
l+tan

2½ 

Putting tan½ = t 

:. isec2 ½ dx = dt 

1 
Where C = cl + -log4 

3 

Self-Instr,u;tional Mqler/1,J 
m 
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(3) 

(4) 

J 1 dx 
4cosx-1 

Let 1-J dx 
4cosx-1 

Putting tan½ = u, 

1 ✓5 {J¾ +u} =-x - log fv +C1 
. 5 2 v¾-u 

= - I- log{ ✓3 + ✓5 u}+ C1 - 1 ✓5 
✓15 ✓3-✓5 u ✓15log 

1 { ✓3 +✓5 tan½} = - log -------'- + C 
✓15 ✓3 -✓5w.n½_ ' 

I 
Where C = C1 + r;-; log✓5 

v15 

J I dx 
1-2sinx 

- Let l=J dx 
1-2sinx 

2tanXI 
·: sin2x = / 2 

l+tan
2½ 



(5) 

Let 

Putting tan½=~ 

== J 2du 
(u-2)2 -3 

l (u-2)-✓3 
== 2 x-log_....!...._----<---+ C 

2✓3 (u-2)+✓3 

I (tan½-2)-✓3 
=-log---~-+ C 
✓3 tan½-2+ .J3 

1 tan½-(2+✓3) 
=-log-----+C 
✓3 tan½-(2-✓3) 

2tdt 
= - --

1 + tan
2 

X 

2tdt 
= 

l+ t4 

:. lsec2 ½ dx = du 

Putting tanx = t2 

:.sec2 xdx = 2tdt 

dx = 2tdt 
sec2 x 

Integration 
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Consider 

212 

=J- d1 
1 + 14 

Putting I + y; = u, 

( 1 -
1
; )d1 = du 

I du 

= u 2 -{✓2) 

= 
1r,;tog{"-~}+c1 

2-v2 u + 2 

··=- 1 log[ t+ ½ -✓2J+c1 2✓2 t+ y; + ✓2 



Now consider 

=-
1-Iog[ t+ Y,-✓2J+c1 2✓2 t+ Y, +✓2 

1 1 [ tanx - .J2 tanx + 1] C 
= 2✓2 og tanx + ✓2tanx + 1 + 1 

(1 + };'2 )dt 
i, ~ f , X 

t + 2 
t 

Putting t-Y, =v, 

( 1 + ,12 )dt = dv 

1 - 1 ,2 -1 
= ✓2 tan jit +C2 

= - 1 tan-i[ tanx-1]+ C 
✓2 ✓2tanx 2 

. J r,-- 1 1 [ tanx -~ + 1] 1 1 _1 [ tanx -1] C 
• • -v tanx = 2✓2 og tanx + .J2 tanx + 1 2 tan+ 2 tan .J2 tanx + 

Integration 
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(c) J 1 dx 
acosx+ bsinx 

Let I =I· dx 
acosx + bsinx 

sec
2
½dx 

= J a-atan2 ½ +2btan½ 

f 2dt 
- a - at2 +2bt 

2 I 
=-x2 Jo/log 

a a2 + b2 

a2 

Putting tan½ = t, 

~sec
2 ½ dx = dt 



Example 6 : J dx 
3 cosx + 4sinx 

Let I =J dx 
3cosx + 4sinx 

Putting tan½ = t, 

lsec2 ½ dx = dt 

Integration 

Sdf.lmtrNctio11al Maierial 
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(d) J 1 
acosx + bsinx + c 

Let l =f 
1
· 

acosx + bsinx + c 

J ·dx 

= ( 1- tan 
2 
xi J { 2 tan xi J a 12 + 12 +c 

l+tan
2½ l+tan

2½ 
(1 + tan

2 ½)<ix 
= I a - atan' ½ + 2btan' ½ + c(1 +tan':½) 

sec2 xi dx J / 2 . 
- (a+c)+(c+a)sec2 ½ +2btan½ 

1 sec2 ½dx 
=~Jc+ a+ tan2x/ +~tanxl 

c-a 12 c-a 12 

Here two cases arise -

Case I : If c > a, then 

1 sec2½dx 
l= -c--af-c-+_a_(--~=b- )_2 _ _ b_2_ 

- + tanXI +- -
c-a 12 c-a ( c-a)2 

1 sec2½dx 

=~J c2 -a2 -b2 ( b )2 
----+ tan½+ -

(c-a)2 2 c-a 

1 
C =C1 --log3 

5 



Case II : If c < a, then 

1 sec2½dx 
1--f 2b xi - a-c a+ c -tan2 xi -- -tan;,

2 72 a-c a-c 

b 
Putting tan x/2 + -- = t, 

72 c-a 

1 2 xl dx =dt -sec 72 2 

b Pufhnn tan XI + -- = t, .... ~ 72 a-c 

1 2 xl dx =dt -sec 72 2 

= 1 f { b bi } b2 

( a-c) (:~:)- tan'½ +2x a-c tan½+ (a-c)' + (a-c)' 

sec2 xi dx 
I I 12 2 

=(a-c) (a+c) h
2 

-(tanxl +- b) 
~ - + 2 / 2 a-c a-c (a-c) 

sec2 ½ dx 
l J 2 

- 2 2 ( b ) - (a-c) a2 +b -c _ tanxl +-
)

2 12 a-c (a - c . 

1 2dt =--f 2 2 2 
a-c a +b -c -t2 

(c-a)2 

· Integration 

Stlf-inslrllctloJud MflJmllJ 
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1 - .J log(a-c) + C1 
2 a2 + b2 + c2 

= -,,====lo -;:::====--;-----=---~ + C 
1 , ✓a2 + b2 -c2 + {(a-c)tan½ + b} 

2.Ja2 + b2 -c2 .Ja2 + b2 -c2 -{(a-c)tan½ + b} 

Where C = l log( a - c) + C 1 
2.J a2 + b2 + c2 

· 

Rema~k: The above integral may also be evaluated by putting a= rcosa., b = rsina., so 

that r2 = a2 + b2
. 

Example 7 : J dx 
cos.x + sin.x + 3 

Let I= f dx 
cos.x + sin.x + 3 

Putting tan½+ 1 = I, 



(e) 

Let 

=f 2dt +C 
t2 +4 

=2x!tan-1 ~+C 
2 2 

= tan-1 (tan½+ 1) 
2 

J a + bcosx + csinx dx 

I+ mcosx + nsinx 

1 = J a + bcosx + csinx dx 

I+ mcosx + nsinx 

Let us choose the real numbers, A, B and C, such that 

a+ bcosx +·csinx = A(l + mcosx + nsinx )+ B!..-(1 + mcosx + nsinx) 
dx 

a+ bcosx + csinx = A(l + mcosx + nsin~) + B..!!_(l+ mcosx + nsinx )+ C 
dx 

a+ bcosx + csinx = A( I+ mcosx + nsinx )+ B(-msinx + ncosx) + C 

a+ bcosx + csinx = (Am+ Bn )cosx + (An-Bm )sinx + C + Al 

Equating the coefficient of cos x, sin x and constant terms on both sides, we get 

Am + Bn = b, An - Bm = c, C + Al = a 

On solving these equation we get the value of A, B and C, as 

A== bm+cn 
2 2' m +n 

B= bn-cm. 
m2 +n2' 

a(m2 +n2)-l(bm+cn) 
C = --''------'------

m2 +n2 

Now, the given integral can be written as 

J a+ bcosx + csinx dx = ( bm + en )Jr1x + ( bn-cm )I (-msinx + ncosx )dx 
1 + mcosx + nsinx m2 + n2 m2 + n2 l + mcosx + nsinx 

{

a(m
2

+n
2
)-l(bm+cn)} dx 

+ m2 + n2 J 1 + mcosx+ nsinx 

( 
bm+ en) ( . ) = 

2 2 
x+log l+mcosx+nsmx 

m +n 

+{a(m
2 

+n
2
)-l(bm+cn)}f dx 

m2 + n2 l + mcosx + nsinx 

Integration 
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The integral in the third term can be evaluated by the method given in ( d). 

f 
2 + 4cosx + 3si.nx dx Example8: 
l + 3sinx + 2cosx 

Let l=f2 +4cosx+3si.nx dx 
l + 3sinx + 2cosx 

Let us choose the real numbers, ~ B and C, such that 

2+ 4cosx+ 3si.nx = A(l + 3sinx + 2cosx) + B~(l + 3sinx +2cosx )+ C 
dx 

2 + 4cosx +3sinx = A(l + 3sinx+2cosx)+ B(3cosx-2sinx )+ C 

2+ 4cosx + 3sinx = (3A -2B)sinx+(2A + 3B)cosx+ A+ C 

Equating the coefficient of cos x, sin x and the constant terms on both sides we get, 

3A+3B=4, 3A-2B=3, and A+C=2 

On solving these equation we get, 

A=17 B=_i 
13' 13 

Thus the given integral can be written as -

1 = f 2+ 4cosx+3sinx dx 
l + 3sinx + 2cosx . 

and 
9 

C=-
13 

= 17 f(I + 3sinx+2cosx )dx + iJ(3cosx-2sinx )dx + ! J dx 
13 13 1 + 3sinx + 2cosx 13 1 + 3sinx + 2cosx 

17 51 34 . 6 . 9 
I= - --cosx+-smx+ -log(l +3smx +2cosx )+-xl1 13 13 13 13 13 

... ( 

1) ' 

Where I = I dx 1 1 + 3sinx + 2cosx 



(f) 

I =!J 2dt 
3 2-t2 

2 I I ~✓2 +II 
= 3 X 2✓2 O ✓2 - t 

1 .Ji+(tan½_-1) 
=-log ---+---~ 1 

3✓2 .Ji-( tan½ -1) 

=-1 log[✓2-l+tan½_] 
3✓2 ✓2 + 1- tan½, 

Putting tan½ - 1 = t, 

~sec
2 ½, dx = dt 

Putting this value of 11, in (1) we get-

17 51 34 . 6 I (l 3 . 2 ) I = - x - -cosx + -SIDx + - og + smx + cosx 
13 13 13 13 

· 9 1 [.Ji -1 + tan½] +- x- log ---~ 
13 3✓2 ✓2 + 1 ~ tan½, 

or I = J_[11x -5 Ix+ 34sinx +~log( 1 + 3sinx + 2cosx) 
13 13 

J pcosx + qsinx dx 
acosx + bsinx 

Let 1 = J pcosx + qsinx dx 
acosx + bsinx 

·+2-Iog ✓2-l+tan½_J+c 
✓2 ✓2+1-tan½ 

Integration 
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Now, we choose the real numbers, A, and B, such that 

pcosx + qsinx = A ( acosx + bsinx) + B !!_( acosx + bsinx) 
dx 

or pcos:x + qsinx = ( Aa + Bb )cosx + (Ab-Ba )sinx 

Equating the coefficient of cos x, sin x and the constant terms on both sides we get, 

Aa+ Bb = p, and Ab-Ba= q 

On solving these equation we get, 

A- ap+bq and 
- a2 + b2' 

Thus the given integral can be written as­

/ = J (pcosx + qsinx) dx 
( acosx + bsinx) 

B= bp+aq 
a2 + b2, 

(ap+bq)f( b. )dx (bp+aq)f(-asinx+bcosx) = -,------:- acosx + smx + --- ~,----------'-dx 
( a2 + b2) a2 + b2 

( acosx + bsin~) 

( ap + bq) (hp+ aq) 
= 

2 2 
[- asinx + bcosx] + 

2 2 
log( acosx + bsinx) + C 

a +b a +b , 

Example 9: J 3cosx + 4sinx dx 
2cosx + 3 sinx 

Let / = J 3cos:x + 4sinx dx 
2cosx + 3sinx · 

Choosing the real numbers, A, and B, such that 

3cosx + 4sinx = A(2cosx + 3sinx) + B!!_(2cosx + 3sinx) 
dx 

3cosx + 4sinx = A(2cosx + 3sinx) + B(-2sinx + 3cosx) 

or 3cosx + 4sinx = (2A +3B)cosx + (3A-2B)sinx 

Equating the coefficient of cos x, and sin x on both sides we get, 

2A+3B=3, and 3A-2B=4 

On solving these equation we get, 

A=
18 

and B =J_ 
13' . 13 

Tb.us the given integral can be written as -

I f
3cosx+4sinxdx 18J(2 3 . )dx I J(-2sinx + 3cosx)dx = ----- = - cosx + smx + -
2cosx + 3sinx 13 · 13 (2cosx + 3sinx) 



= 
18 

(-2sinx + 3cosx) + _!_ log~cosx + 3sinxl 
13 13 

J 
3 cosx + 4 sinx 1 [ . . ] I= . dx = - 54cosx -36smx + log~cosx + 3smx/ + C 
2cosx + 3smx 13 

I x2dx 
Example 10 : 

2 ( xsinx + cosx) 

Let 
x2dx 

1 
= J (xsinx + cosx ) 2 

= J xcosxdx __ x_ dx 
(xsinx+cosx)2 cosx 

Takin X firs d xcosx th d fun . d. . b g- as tan 
2 

as e secon cnon an mtegratmg y 
COSX ( X sinx + COSX) 

parts, we get . 

Let 

1 =~ J xcosx dx-J[!!_(_ x )J xcosxdx ]dx 
cosx ( xsinx + cosx) 2 dx cosx ( x sinx + cosx) 2 

I -J xcosx 
I - • 2 

(xsmx + cosx) 

=--=-----I ( xsinx + cosx) 

Putting xsinx + cosx = t, 

(xcosx + sinx-sinx )dx = dt 

xcosxdx = dt 

1 =~[ · 1 ]-J(cosx+xsinx)(- I Jdx 
cosx xsinx+cosx cos2x (xsinxcosx) 

-x =------+ tanx 
cosx( xsinx + cosx) 

-x sinx 
=-----~+-

cosx( xsinx + cosx) cosx 

= _1_[-x + xsin
2 
x + sinxcosxl 

cosx (xsinx + cosx) 

Integratioi 
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(g) 

Let 

=-1 I sinxcosx-(I~sin
2
x)x] 

cosx l (xsinx + cosx) 

1 [ sinxcosx-xcos
2 

x ] 
= cosx (xsinx + cosx )xcos2 x 

sinx-xcosx 
=-----

xsinx+cosx 
2 . 

:.J x 
2 

dx = smx-xcosx + C 
(x sinx + cosx) x sinx + cosx 

l=f dx 

a+btanx 

J cosxdx 
== acosx + bsinx 

Now, talcing the real numbers A and B such that 

cosx = A( acosx + bsinx) + B!!_( acosx + bsinx) 
dx 

= A( acosx + bsinx) + B( bcosx - asinx) 

cosx = (Aa + Bb )cosx + ( Ab - Ba )~x 

Equating the coefficient of cos x, and sin x on both sides we get 

Aa+Bb =I and Ab- Ba =0 

On solving these equation we get, 

A a dB= b 
= 2 2 an 2 2 

a +b a +b 

cosx a b ( bcosx - asinx) 
----=---+---~-------'--
acos+ bsinx a2 + b2 a2 + b2 acosx + bsinx 

:. The given integral takes the form 

1 = J cosx dx = a f dx + b J(bcosx-asinx) dx 
acos+ bsinx a2 + b2 a2 + b2 acosx + bsinx 

= 
2 

ax 
2 

+ 
2 

b 
2 

lo~acosx + bsinxl + C 
a +b a +b 

Example 11: 



Let i- I dx 
3 +2tanx 

= J _co_sxdx __ 
3cosx + 2sinx 

Choosing real number A and B such that, 

cosx = A{3cosx + 2sinx) + B~(3cosx + 2sinx) 
dx 

= A{3cosx+2sinx) + B(-3sinx+ 2cosx) 

cosx;:: {3A+ 2B)cosx +(2A-3B)sinx 

Equating the coefficient of cos x and sin x on both sides, we get 

3A+2B=I, 2A-3B=0 

On solving these equation we get, 

3 
A=-

13 
and 

2 
B=-

13 

Thus the given integral can be written as -

/;:: J cosxdx =2-Jdx+~ J(2cosx-3sinx)dx 
3cos2x + 2sinx 13 13 (3cosx + 2sinx) 

I cosxdx 3 2 . 
:. I= -----=-x + - log~cosx + 2smxl + C 

3cos2x + 2sini 13 13 

(h) J sin'" xcosn dx 

If m and n are positive integers, the integral can be obtained by successive reduction 
or by expre~ing sin"' xcosn dx as -

or 

sin"' XCOSn = sin"' XCOSn-l XCOSn X 

sin"' xcosn = sin"' xcosn-l xcosx 

This will be more clear from the following example : 

Example 12: J sin3 xcos4 dx 

Let I= J sin3 xcos4 dx 

Here m=3 (odd) and n=4(even) 

:. I= J sinxsin2 xcos4 xdx 

= J sinx{l-cos2 x)cos4 :xdx 

if m is odd and n is even 

if m is even and n is odd 

Putting cos x = t and - sin x = dt 

lntegrati 
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Example 13: 

Let 

==-I (1-12)14
dt 

::: -J (14 
-t

6
)dt = I (16 

-t
4
)dt 

=---
7 5 

cos7 X COSS X 
=-----+C 

7 5 

Jsin3 xcos4 dx =!cos7 x-!coss x+C 
7 5 

J sin4 
XCOS

3 dx 

I= f sin4 xcos3 dx 

Here m = 4 (even) and n = 3 (odd) 

:. I= f sin4 x ·cos2 xcosxdx 

= Jsin4 x(l-sin2 x)cosxdx 

Putting sin x = t and cos x dx = dt 

= f 14 (I-t2)dt 
= J (14 

- t6)dt 

=---
5 7 

l.s l.7 C =-sm x--sm x+ 
5 7 

Jsin4 xcos3 xdx =!sins x-!cos7 x+C 
5 7 

(i) J sin• xcos" xdx 

If m or n is an odd positive integer or (tn + n) is an even negative integer then the 
integral can be obtained more easily by substitution. 

Case I: When morn is an odd positive integer, then putting m = 2 r + I, where r is an integer 
and r ~ 0 then by substituting cos x = t, we can find the integral for 

Jsin"' xcosn xdx = Jsin2
'+

1 xcos" xdx 

= J sinxsin2
' x •cos" xdx 



= J sinx(t-cos2 x )' •cosn xdx 

Putting cosx = t 

- sinx = dt 

Now expanding (t-t2)' by binomial theorem we·can easily evaluate it. 

Similarly, when n is an odd positive integer, we can evaluate it by following the same . 
procedure as above. 

Example 14: J sin 7 xcos2 xdx 

Let I = J sin 7 xcos2 xdx 

Here m = 7 (odd) and n = 3 (even) the given integral can be written as 
I= J sinxsin.6 xcos2 xdx 

= J sinx(l-cos2 x )3.cos2 xdx 

Putting cos x = t and - sin x dx = dt 1 

= -J (1 - /2) 3 t2 dt 

= J (t2 -1)3 12
dt 

= J (16 -314 ·1+312 -0t2dt 

= J (18 -316 +3t4 -12)d1 

19 311 115 13 

=---+---+C 
9 7 5 3 

=!(cosx)9-i(cosx)7 +~(cosx)5 _ !(cosx)3 
+C 

9 7 5 3 

J.7 1 9 3 7 3 5 1 3 sm xcosxdt =-cos x--cos x + - cos x --cos x + C 
9 7 5 3 

Example 15: J sin.6 xcos3 xdx 

Let I = J sin6 xcos3 xdx 

Here m = 6 (even) and n::;;: 3 (odd) 

Integration 

Se(f-lnstru¢9np/ Mftailtl 

w. 



&{f-Instr,u;tto,uu Mqtqipl 
Z!M. 

the given integral can be written as 
I= J sin6 x -cos2 x•cosxdx 

= J sin6 x(1 - sin2 x )r cosxdx 

Putting sin x = t and cos x dx = dt 

= J t6 (1 -t
2

) dt 

= J (t6 - ,s)dt 

t1 t9 
=---+C 

7 9 

(sinx) 
7 

(sinx )9 

=~--- -+C 
7 9 

Jsin6 xcos3 xdx =!sin7 x-!sin9 x+C 
7 9 

Case II : When (m + n) is an even negative integer, where m and n are not necessarily integers. 

Let (m + n) = - 2r, where r is a positive integer, we can evaluate the integral of 
sinm xcosn x by putting tan x:;;;;; t. 

• m Ill n 

J . m n xdx J S1ll XCOS XCOS X dx 
SID XCOS = - ------

COS111 X 

= J tan'" xcos""+nxdx 

= Jtan'" xcos-2rxdx 

= Jtan'" xsec2rxdx 

= J tan'" xsec2
r-

2xsec2x dx 

= J tan'" x(l+ tan
2 xr-1sec2x4x 

·: m + n =-2r 

Putting tan x = t and sec2 x dx = dt 

= J 1111 (1 + t2 y-1 dt 

The integral can be found by expanding (1 + ,y-1 using binomial theorem. 

Example 16: J ½ 1 ½ dx 
sin 2 XCOS 2 X 

Let I = J sin-½ xcos-½ xdx 



m + n =-(~ + i) = -4 (an even integer) 

the given integral can be written as 

I sin-½ X -½ -½ 
/ == -½ ·COS 2 X·COS 2 xdx 

COS 2 X 

= Jcos-
4 

xdx 

tan½x 

sec 4 xdx =I-
tan½ x 

= Jsec 2 
xxsec

2 
xdx 

tan½ x 

Putting tanx = t and sec2 x dx = dt 

MISCELLANEOUS SOLVED EXAMPLES 

(1) Evaluate J sin¾ xcos3 x dx 

Let / = J sin¾ xcos3 xdx 

= J sin¾ xcos2 xcosx dx . 

= J sin¾ {I-sin2 x )cosxdx 

Putting sin x = t and cos x dx = dt 

Integration 
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(2) 

(3) 

Evaluate 

Let 

Evaluate 

Let 

= Jt¾(l-t2)dt 

= J(t¾ _/¼}t 

J 1+8:s2 x 

1-J dx 
- 1 + 8cos2 x 

= J sec: x dx (dividing Numerator and denominator bycos2x) 
sec X +8 

sec2 xdx 

=Jtan2 x+9 

dx 

Jl+3sin2 x 

I =I dx 
1+3sin2 x 

Putting tan x = t and sec2 x dx = dt 

sec2 
X dx -J- - - -- ( dividing Numerator and denominator by cos2 x) 

- sec2 X + 3 tan2 X 

I 
sec2 xdx 

= 1+4tan2 X 

1 J sec
2 

xdx 

=~- tan2 x+ ¼ 
Putting tan x = t and sec2 x dx = dt 



1 f dt 
=4 ,2 + ¼ 
=_!_x_l tan-1 _t +C 

4 ½ ½ 
= ~tan-1(2tanx) + C 

4 

= ~tan-1(2tanx) +C . 

(4) Evaluate f ~ dx 
SI.DX 

Let l=f~dx 
SlDX 

.Jcos2 x-sin2 x dx 
= f sinx 

= f .Jcos2 x-ldx 

(By Multiplying numerator and denominator by .Jcot2 x - 1) 

f 
(cosec2x) f cosec2xdx 

= -====dx-2 ----;::=== 
.Jcot2 x- l cos ec2 x.Jcot2 x-1 

Putting cotx = t and -cos ec2 x dx = dt 

= -f dt + 2 · dt + C 

ftCi (t+t2)✓(t2 -1) 
=l1+I2 

Now, 11 ;-J ~ ;-log\•+ ✓(•' -1)\+c, 

= loglt-✓(12 -•)I+ C1 = logrsx-✓cos2 x-11+ C1 

And / 2 = 2f dt Putting t = _!__, dt = - -1 
dz 

(12 + 1)ftCi 2 z
2 

Again putting,! - z 2 = u, 2z dz = 2u du 

Integration 
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-f 2udu _ 2f du 
- (2-u2)u - 2-u2 

1 ✓2+u 
= 2 • x r,;- log ../2 + C 2 

2-.J2 2-u 

l l ../2+✓17 C 
= r,;- og + 2 

-.J2 ✓2-✓l-z2 

J 1 l ✓2t+#-i C 
2 = r,;- og r,,-: + 2 

-.J2 ✓2 --vt2 - 1 

. 
1 

_ 1 1 .fi.cotx+.Jcot2-l C 
• • 2 - r,;- og + 2 

-.J2 ✓2cotx-✓cot2-1 

J -l cosx-~ 1 1 ✓2cos.r+~ C 
- o + r,;- o r.; ~ + , . WhereC1 +C2 =C 

sin.r -.J2 -v2 cosx-vcos2x 

(6) Evaluate f { .Jtan.r + 9dx 
Let J = J{.Jtan.r +9dx 

= J sin.r + cos.r dx 
,Jsinxcosx 

= ✓2 I sinx + cosx dx 
,.J2sinxcosx 

. Multiplying numerator and denominator by ../2 

=✓2J (sinx+cosx} dx 

✓i-(sinx-cosx ) 2 

=✓2J dt 
~ 

= ✓2sin-1 t+ C 

= .Jisin-1( sin.r-cosx) + C, 

Putting SID X - COS X == t 

( cosx + sinx )dx = dt 



Integration 

(7) Evaluate Jtan-1,Jl-x dx 
l+x 

Let J = J tan-I ,Jl-x dx Putting X = COS U 
l+x 

dx =-sin udu 

= Jtan-1 1-cosu ( . )d -smu u 
1 + cosu 

2sin2 ii 
= -f tan- I 2 (sinu)du 

2cos2 ii 
= -f tan-

1
( tan ii) sinudu 

=-J~sinudu 

= -~[ ux(-cosu)-1J-cosudu] 

u 1 J =-cosu+- cosudu 
2 2 

u 1 . C = -cosu- -smu+ 
2 2 

=~[xcos-1x-9+C 

(8) Evaluate J sin5'xdx 

Let I=Jsin5 xdx 

= J sin4 
xsinxdx 

= J (t-cos2 
x )

2 
sinxdx 

Putting COS X = t 

-sin X dx= dt 

=-f (1-1
2
)

2 
dt 

= -J (1 + t4 
- 2t

2
)dt 

= f (212 
-t

4 
-I)dt 

~flmt!H.caolllli Moterild 
w. 
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(9) Evaluate 

Let 

Now, 

13 15 
=2----t+C 

3 5 

2 3 1 5 =-cos x--cos x-cosx+C 
3 5 

r Jcos(x-9) dx 
cos(x + 9) 

l=J✓cos(x-9) dx 
cos(x+9) 

=J cos(x-9)cos(x-9) dx 
cos(x + 9)cos(x-9) 

-J cos(x-9) dx 
- ✓cos(x+9)cos(x-8) 

= f cos(x-8) dx 
cos2 x-sin2 8 

= f cosxcos9 + sinxsin8 dx 

✓cos2 x-sin2 8 

= f •cosxcos9 dx+ f sinxsin9 dx 

✓cos2 x-sin2 e .Jcos2 x-sin2 8 

=11 +/2 

11 
= f cosxcos8 dx 

✓(1-sin2 x)-{t-cos2 8) 

= f cosxcos9 dx 

✓1-sin2 
X -1+COS

2 8 

= f cosxcos9 dx 

,Jcos2 9 -sin2 
X 

Putting 

I du 
. 11 =cos9 -.====-

.Jcos2 9 - u2 

9 . - t u C =cos •sm --+ 1 cos0 

. .. (1) 

sin x= u 

cos xdx= du 



and 12 = I sin8sindx 

.Jcos2 
X - sin 2 8 

12 =sin8 J -dv 
.Jv2 

- sin2 8 

Putting 

= -sin8 log!v + .Jv2 
- sin2 ej + C2 

= -sin8 logf osx + .Jcos2 
X - sin2 e j + C2 

COS X = V 

- sinx dx =dv 

, i = cos8 -sin-1 sinx -sin8 logL"sx + .Jcos2 x - sin2 el+ C 
cos8 i 

WbereC1 +C2 =C 

.Jcos(x-8) · sinx f ✓ l f . s( ) =cosa.sin-1---sin8log sx+cos2 x-sin28 +C 
co x+a cos8 · 

(10) Evaluate 

Let 1==f . l 
2
d 

. {9sm2 x+4cos2x) 

= J sec
4

xdx 
2 

(9tan
2 
x+4) 

= J(l + tan
2 x)sec2 

xdx 

(9tan2 
X + 4) 2 

Putting tanx = t 

sec2 x dx = du 

/ntegrati, 

Sdf-/nmllCtional Mtztmql 

l1l 



Business Mathematics 

Sdf-1,..,,,,ctipfflll Mlllmll/ 
m 

= _1_/l +t
2)dt 

81 (t2 + ½)2 

=J./1+ ,¾tan2 ,)sec' zdz 

81 (¾ tan2 z + ¾)2 
Putting 

2 
t =-tanz 

3 

2 2 dt = - sec zdz 

= _!__ x ~ J (1 + ,¾ tan2 
z )sec' zdz 

81 3 ~~{tan2 z+1)2 

=-2-J(1+ ¾ tan
2 

z)sec
2 

zdz 

3x16 sec4 z 

=_!_J (1 + ¾ tan
2 z) 

24 sec2 z 

= 
2
~ xi J {9cos

2 z + 4sin
2 z) dz 

= 2:6 {J 9(1 + ~•2z) + 4c-c;s2z) }dz 

= ~1
- x !J{ 9+9cos2z + 4- 4cos2z}dz 

216 2 

= -
1
-J{13 + 5cos2z )dz 

432 

= _l_[l3z + 5sin2z] + C 
432 2 

= -
1
- [13· tan-1 + ( ~ t) + ~ x 2sin zcos z] + C 

432 2 2 

= - tan - + -;::::== X ---;:=== + 1 [13 -1( 3t) 5 3t 2 ] C 
432 2 ✓4+9t2 ✓4+9t2 

=-1 [ntan-1( 3t)+s { 6t }]+c 
432 2 ✓4+ 9t2 

3 



= _l [l3tan-i(3tanx)+ 5 { 6t }]+ C 
432 2 4+9tan2 x 

=-•-[13 tan_1(3tanx)+ 30tanx j,+C 
432 2 4+9tan2 x 

3.8.2 INTEGRATION OF OTHER TRANSCENDENTAL FUNC"rlONS 
(EXPONENTIAL AND LOGARITHMIC) 

lx 

(11) Evaluate I e dx 
.Ja2 + e4x 

(12) 

Let 
lx 

l=J e dx 
..Ja2+e4x 

1 J dt 
= 2 ..J a2 + ,2 

=~log { t + ..J a
2 + t2 

} + C 

=~log { e" + a'+(,")' + C 

e7logx _ e6logx 

J e4losx _ e31ogx dx 

Let 

x4 =-+C 
4 

Putting 

·: elogx =x 

e2x = t 
2elxdx = dt 

lntegrati, 
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(13) 

(14) 

J{log(logx) + 
1 

2 } dx 
(logx) 

Let / = J{log(logx) + 
1 

2 } dx 
(logx) 

= J log( logx) dx + J 
1 

2 dx 
(logx) 

= J log(logx )-ldx + J 
1 

2 dx 
(logx) 

Integrating first term, taJring unity as second function, we get 

/=xlog(log(x))-J.!_( 
1 

) xxdx+J 
1 

2 dx 
x logx _ (logx) 

=xlog(log(x)) - J-
1
-dx+ J 

1 
2 dx 

logx (log~) 

=xlog(log(x)) - [-
1
- xx-J 

1 
2 x!xxdx] + 

1 
2 dx 

logx (logx) x ( logx) 

=xlog(log(x))-~-J 
1 

2 dx+ J 
1 

2 dx 
logx (logx) (logx) 

= x log (logx )- - x- + C 
logx 



:. I= i J ✓t ·(logt)-(-dt) 

= 1 J ✓t •logt ·dt 

Putting 1 + -;- = t 
X 

2 
--(ll = dt 

x3 

Taking log t as first and ✓t as second function, integrating it by parts, we get -

I ( 1 )½ ( 1 ) 2 ( 1 )½ =-- l+- log 1+- -- 1+ - +C 
3 x 2 x2 9 x2 

l ( 1 )½[ ( 1 ) 2] = - 3 1 + ~ log 1 + x2 - 3 + C 

EXERCISE 8.1 

Evaluate the following ·: 

Q.1.: I dx 
2+cosx 

Q. l.: J sm dx 
✓1 + sinx 

Q. 3.: J 2sinx + 3cosx dx 
3sinx + 4cosx 

Q. 4.: J 3 + 4sinx + 2cosx dx Q. S.: J.Jcos2x Q. 6.: J 
1 

½ ½ dx 3 + 2sinx + cosx cosx cos sin 2 

Q. 7.: J sin¾ cos3 x dx Q. 8.: Jsin- lEE dx 
a+x 

Q. 9.: J . l dx 
✓cos3 xsin5 x 

Integration 
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Q. 10.: f .Jtanx secxcosec x dx f 1 dx Q ·J (3sinx-2)cosx Q. 11.: --- . 12.. -----------'-- ----,dx 
6 + 6 cosx 5 - cos2 x - 4sinx 

Q.13.: J dx 
sinx(3+ 2cosx) 

Q.14.: J ( dx 
cos x+a)cos(x+b) 

J 
SID-IJ; -cos-1 ✓x dx 

Q.15.: r r 
sin-1vx + cos-1vx 

. ANSWERS 

(1) _3_tan-1(tan½]+ C 
✓3 ✓3 

(3) .!!x +-
1 

log(3sinx+ 4cosx) + C 
25 25 

(5) cos-1(tan~ L12tan-1(~)+ C (6) 2rv~ Jismx 
2 ½ -2.Jcotx +-tan 2 x + C 
3 

(7) 

(9) 

sin
1
¼-6sin 2¾-~+ C 

23 

2 -½ ½ -3(tanx) 2+2(tanx) 2 +C 

1 X 
(11) -tan-+ C 

6 2 

(8) 

(10) 2✓tanx + C 

(12) 3 log(2-sinx) + ( 
4
_ ) + C 

2-smx 

1 1 . 2 
(13) -log(l -cosx )--log(l + cosx) +-log(3 + 2cosx) + C 

IO 2 5 ; , 

(14) I log{cos( a+ b )} + C 
sin( a - b) cos(x +a) 

(lS) 2(2x-l)sin _1✓x 2✓x+'1(1-x) C 

1t 1t 

3.9 DEFINITE INTEGRAL 

Introduction : 

We have learnt to find the area of triangle, rectangle etc. in earliar classes. These areas 

are the closed regions of the plane bounded by line segments. The methods which are 

involved in finding such areas, can not be applied in the region which is partially or 

wholly bounded by curves. The mathematical tool which can solve such problems, is 

the concept of definite integral. 

The definite integral is also used in economics, finance and probability. 



Defimtion 9.1 : 

If fbe a continuous function ofx, defined on a closed interval [ a, b ], then J: f( x )dx is 

called definite integral of/( x) between the limits a and b. Here a is called lower limit 
and bis called upper limit. The interval [a, b'], is called range of integrals. 

~f fJ(x)dx =F(x),when !f(x)=F(x), then J:J(x)=F(b)-F(a) 

"If a function is integrated under two limits, it is called definte integral." 

We know that, 

f f(x )dx = F(x) + C ... (1) Indefinite integral of f(x) 

Putting x = b in equation ( 1 ), we get -

ff(x)dx =F(b)+c ... (2) 

Putting x = a in equation (1 ), we get -

f f(x)dx =F( a) +C .. . (3) 

Subtracting (3) from (2) we get -

J: f(x)dx = [(F(b)+c)-(F(a)+c)] 

We see that/( b )- f( a) is definite integral, the constant term vanishes. 

The above definte integral can also be written as, 

1 f(x)dx =[F(x)]: =F(b)-F(a) 

Where F( x) = J /( x )dx or ~ F( x) = /( x) 

Remark : The value of a definite integral over any particular integral does not depend on the 
variable of integration, but depends on the functi9n and the interval. If the 
independent variable is denoted by u or t instead of x, we simply write the integral of 

Lf( u)du or Lf(t)dt instead of J:f(x )dx 

Hence the variable of integration is called dummy variables. 

SOLVED EXAMPLES 

Example 1.: Evaluate 12 (x3 + 1) dx 

Solution: We have 

f (x3 + 1) dx = x: +x 
Self.lnstructionol Mf(cd,I 

fil 
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i'(x' +1) dx =rx: +x r 
=[2: +2]-[¾+1] 

=[4+21-[1: +1] 
5 

=6--
4 

19 
=-

4 

Hence, r (x3 + 1) dx == l: 

Example 2.: Evaluate 1( xe2
.x + sin 7) .dx 

Solution: We have 

xe2
.x 1 2.x 2 1tX 

= - ---e --cos-
2 2 w 2 

( by definition) 

=[xe2,I-H•2,I-![cos; I 
= (e2 -o)-1(e2 -e0

)- ~ [cos ; - cosO] 

= e2 - ! e2 + ! _ I [ 0 -1] 
2 2 1t 

l 2 2 1 
= - e +- +-

2 1t 2 

Example3.: Evaluate l;4(2sec2 x+x3 +2) dx 



Solution: We have 

J(2sec2 
x+x

3 +2) dx 

= J2sec2 
xdx+ f x3

dx+2f dx 

x4 
= 2 tanx + - + 2x 

4 

¾ [ 4 ]¾ J
0

4 (2sec2 x+x3 +2)dx= 2tanx+x
4 

+2x 
0 

= [2tanx ]~ + {[x4];+2[x]~ 

=(i1an:-1anof +[¼(¾)' -o]+2[¾-o] 

( )

4 
l 1t 1t =2xl+- - +2-
4 4 4 

3.10 EVALUATION OF DEFINITE INTEGRAL BY SUBSTITUTION: 

To evaluate definite integral by substitution the original variables are changed to 
the new variables and the limits of original integral are changed according to the 
new variable OR after the integration the new variables are in terms of the original 
variables and the integral is obtained by applying the limits of the original 
variables. 

n dx 
Example 4.: Evaluate J ---

0 5 + 4cosx 

Solution: We have 

ll dx ll dx 

[s+4cosx = [ (I-tan2 x/] 
5+4 12 

l+tan2½ 
ll (1 + tan

2 ½) dx 

J 5+5tan2 XI + 4- 4tan2 XI 
o 12 12 

( 
t-trui2 ½'] 

:.cosx = 2~ l+tan x2 

Integration 
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n sec2 ½ dx -J 2 
- 9+ tan2 xi 

0 12 

·n:J dx OOJ 2dt 
:. 5 + 4cosx = 9 + 12 

0 0 

=i[ tan-1 oo-tan-1O ]: 

2 1t 
=-x-

3 2 

1t 
=-

3 

Example 5.: Evaluate 
It 

J 5(5-4cose)¼ sin0d0 
0 

Solution: We have 
It 

J 5(5-4cose)¼ si.n0d0 
0 

It ¼ 
J 5(5-4cos9) sin0d9 
0 

-I ¼ 
= - J 5 ( 5 - 4t) dt 

1 

Putting tan½_= t 

where x = 0, t = 0 

X = 1t, t = 00 

Putting cos0 = t 

-sin9d9 = dt 

Where . 0 = 0, t = 1 

9 = 1t, t = -1 



=[(s-4t)¾.,I
1 

= ( 5 + 4 )¾ - ( 5 - 4 )¼ 

=9¼ -1 

=9✓3-1 

3.11 GENERAL PROPERTIES OF DEFINITE INTEGRAL 

The following properties of definite integrals are more useful in the evaluation of 
the definite integrals more easily when the integrand is not a simple function. 

Property I : J: f ( x )dx = J: f( t )dt 

Proof : Let J f(x )dx = F(x) Then J f( t )dt = F( t) 

and J: f(x)dx =F(L)-F( a)= J:J(t)dt 

Property Il: J:1(x)dx=-1J(x)dx 

Proof : LHS = I: f( x )dx = F( b )-F( a) 

= -{F( a)-F(L)] 

= {(f(x )dx] = 

= {(f(x )dx] = RHS 

Property m.: For real numbers a, b, c; where a< c < b 

J:1(x )dx = [f(x )dx+ 1 f(x )dx 

Proof LHS = J: J(x )dx = F( b )-F( a), and 

RHS ·= J: f(x )dx + J: f(x )dx 

= F( c ) - F( a) + F( b )-F( c) 
=F(b)-F(a) 
=LHS 

Property (Ill) can be generalised as 

f:J(x)dx= r f(x)dx+ r f(x)dx+ ... +('_
1

J(x)dx+ J:.1(x)dx 

Integration 
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For RHS=F( c1)-F(a)+F( ci)-F(c1)+ ... F(cr )-F(cr-t) 
+F(b)-F(cr) 

Property IV : f: f( x) = f: f { ( a + b )-x} dx 

Proof Let a + b - x = t, so, dx = dt 
Where x = a, t = b, when x = b, t = a 

Thus as x varies from· a to b, t varies from b to a, 

also x = a + b - t therefore, 

r I ( X )dx = -f: I( a + b - t )dt 

= f:f(a+ b-t)dt 

= f:J(a+b - x)dx 

(by property ill) 

[ Since the variable of definite integral is a dummy variable l 
The above integral can be divided into two parts -

(1) f:J(x)dx= J:J(a-x)dx and (ii) 1f(x)dx= f:J(b-x)dx 

For (1) Putting a-x = t, so dx = -dt 
Where x = 0, t = 0, when x = 0, t = a 

:. RHS of (1) = lf(t)dt 

= foJ(t)dt 

= (f(x)dx 

Su..ularly we can prove (ii) 

Property(v): f
0
f(x)dx=2(f(x)dx 

Proof: We have 
a O a 

f f(x )dx = f J(x )dx + f f(x )dx 
- a - a 0 

by property (TI) 

(by changing the variables) 

if/ is an even function 

i.e. f(-x )::: f(x) 
if/ is an odd function 

i.e. /( --,x )=- f(x) 

... (I) by property (II) 



0 

Now for f f(x )dx putting - x = t, so - dx = dt 
-a 

Where x = - a, t = a and where x = 0, t = 0 
0 0 

f f(x )dx = -f f(-t)dt 
- a a 

a 

= f f(-t)dt 
0 

a 

= f f(-x)dx (By changing the variable t to x) 
0 

Using this in equation in (1) we have, 
0 a 0 

f f(x)dx = f f(-x)dx+ f f(x )dx ... (2) 
-a O a 

(i) When/is an even function, then (2) takes the form, 
0 a a 

f f(x )dx = f f(x )dx + f f(x )dx ·: /( -x) = f(x) 
- a O 0 

a 

= 2f f(x )dx 
0 

(ii) When/is an odd function, the (2) becomes, 
0 a a 

f f(x )dx = -f f(x )dx + f f(x )dx ·: /(-x)=-f(x) 
-a O 0 

2a a 

Property (vi) : f f(x )dx = 2f f(x )dx 
0 0 

if f(2a-x)=f(x) 

if f(2a-x )=- f(x) 
Proof : We have 

2a a 2a 

f /( X )dx = f f(x )dx + ff( X )dx ... (I) by property (II) 
0 0 a 

Putting 2a - x = t, so that - dx = dt or dx = -dt 

Where x = a, t = a and where x = 2a, t = 0 

Integration 
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2a 0 

ff ( x )dx = -ff( 2a - t )dt 
a a 

a 

= f f(2a-t)dt By property (iii) 
0 

a 

= f 1<2a-x)c1x (By changing the variable t to x) 
0 

Putting this in equation (I) we get, 

2a a a 

f f(x )dx == f f(x )dx + f f(2a - x )dx ... (2) 
0 0 0 

a 

Now, (i) if ff( 2a-x) = /( x) then (2) becomes, 
0 . 

2a a a 

If( X )dx =If( X )dx + If ( X )dx 
0 0 0 

a 

==2f f(x )dx 
0 

a 

Now, (ii) if f J( 2a - x) = - /( x) then (2) becomes, 
0 

2a a a 

If( X )dx =If ( X )dx - I J( X )dx 
0 0 0 

IMPORTANT EXAMPLES 

. ½ 
Example 6.: Prove that flog( cotx )dx = 0 

0 

½ 
Solution : Let · I = flog( cotx) dx 

0 

·: /(-x) = J(x) 

... (1) 

by property (iv) 



½ 
= flog( tanx) dx ... (2) 

0 

Adding (1) and (2), we get 

½ ½ 
21 = f log( cotx )dx + flog( tanx )dx 

0 0 

½ 
= [ { log( cotx) + log( tanx) }dx 

0 

½ 
= {log( cotx x tanx )dx 

0 

½ 
= Jlog(l)dx 

0 

=0 

½ 7t 
ED1Dple 7.: Prove that Jlog(secx )dx = --log2 

0 2 

Solution : Let 
½ 

I= flog( secx )dx 
0 

= 1 log{••c(;-x )}dx 
½ 

= jlog( cosx )dx 
0 

Adding (1) and (2), we get 

... (1) 

... (2) by property (iv) 

½ ½ 
21 = flog( secx )dx + flog( cosx )dx 

0 0 

½½ 
= J J { log( sinx) + log( cosx) }dx 

0 0 . 

½ 
= Jlog(sinxcosx )dx 

0 

Integration 
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½ (. ) = ! log smx ;osx dx 

½ 3/z 
= J log ( sin2x) dx - Jtog2 dx 

0 0 

½ ½ 
= Jlog(sin2x )dx--(x ) 0 

2 log2 
0 

½ 1t 
= J log( sin2x )dx--log2 

0 2 
... (3) 

½ 
Now for J log( sin2x )dx 

0 

Putting 2x = t, dx = 1 dt, where x = 0, t = 0, x = ½, t = 1t 

½ 1 Tt 

J log( sin2x )dx = - J log( sin t) dt 
0 

2 o 

21 
= - J log(sint)dt 

2 0 

by property (vi) 

and sin( 1t - x) = sinx 

½ 
= Jlog(sint)dt 

0 

½ 
= J log( sinx )dx by changing variable t to x 

0 

Putting this in (3), we get, 

7t 
21 =J- - log2 

2 . 

½ 
: . I = Jlogsinx dx = - 1t log2 

0 2 

½. 
E 1 8 Pr th 

7- smx-cosx dx 0 xamp e .: ove at J---- = 
0 

1 + sinxcosx 



Solution : Let 
½ . 

1 = J smx-cosx dx 
0 

1 + sinxcosx 
... (1) 

½ cosx-sinx 
=J--dx 

0 
l + cosxsinx 

... (Il) 

Adding 0) and (Il) we get, 

½. ½ . 
12 = J sm~ -cosx dx + J cosx-~x dx 

0 
1 +smxcosx 

O 
1 + cosxsmx 

½[ . . ] = J smx - cos~ - cosx - smx dx 

0 l+smxcosx 

½ 
= fo-dx 

0 

Example 9.: Prove that j x~x dx = 1t(~ -1) 
0 l+smx 2 

Solution : Let 
lt ; 

1 =J xsmx dx 
0 1+sinx 

=Jn (1t-x)sin(1t-x)dx 

0 l+sin(1t-x) 

=1 (1t-x)sinxdx dx 

0 
l+sinx 

lt • lt • 

= J 1t smx dx _ J x smx dx 

0 
l + sinx 

O 
l + sin x 

lt sinxdx 
=1tJ--- l 

0 I+sinx 

lt . 

21 = 7t J smx dx 
0
I+sinx 

... 0) 

a a 

·: J f(x )dx = J f( a-x )dx 
0 0 

... (Il) 

Integration 
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=7t 1- dx It( 1 ) 
[ I+sinx 

= 1t J1t(l- (1-sin X )Jdx 
cos2 x 0 

It 
= 1t J(l-sec2 x + secxtanx )dx 

0 

= 1t[(x-tanx + secx )]; 

=1t[( 1t -tan1t + sec1t )-(0-tanO + secO)] 

=1t(1t-O-l-l) 
=1t(1t-2) 

:21 =1t( 1t -2) 

Hence / =1t(;-1) 

2 

Example 10.: Jpx-ljdx 

Solution: 

Now, 

So, 

0 

2 

Let I= J!a-Ijdx 
0 

p.x - ti = 2x -1, if X ~ ! 
2 

-(2x-I) if x~! 
2 

2 1/2 2 

JI 2x - 1 lt1x = J -( 2x -1) t1x + J ( 2x -1 )dx 
0 O 1/2 

= _ .!_ + .!_ + [4 -2 _ .!_ + .!.] 
. 4 2 4 2 

1 1 =-+2+-
4 4 

5 
=-

2 



ff 

Example 11.: Evaluate J!cosxldx 
0 

It 

Solution: Let I = f !cos~dx 
0 

cosx; 

Wehave lcosx l= 

ifO 5, X 5, 1t 
2 

if~5.X~1t 
2 

-cosx 

It "l It . 

I= J!cos~dx = J cosxdr + J (-cosx )d.r 
0 0 ½ 

½ ff 

= (sinx ) - (sinx ) 
0 ½ 

½ It 

= (sinx ) - (sinx ) 
0 ½ 

=l+l 

=2 
It 

:.[ = J!cosxldx = 2 
0 

Example 12.: Prove that 
3/i sin2 X 1 f . dx = ~ log{ ✓2 + 1 ) 
0 smx + cosx -v2 

Solution: 
½ sin2 x 

Let I= f---
0 sinx+cosx 

.. . (1) 

= 1 sm'(½-x) dx 

0 sin(½-x)+cos(½ -x) 
By property (iv) 

½ cos2 x 
=f--dx 

0 
cosx+ sinx 

.. . (2) 

Adding (1) and (2) we get, 

~ sin2 
X ½J COS

2 
X ll=J - ---dx+ ----dx 

0 
sinx + cosx 

O 
cosx + sinx 

Integration 
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½ [ sin
2 

x cos
2 

x ] = J -~-+--- dx 
0 

sinx + cosx cosx + sinx 

= ½ [~
2 

x+cos
2 

x]dx ! smx+cosx 

½ [ l ] 
= I sinx + cosx dx 

½ 
= f✓2 J sec(x-¾)dx 

. 0 

= Y✓2· log[ sec(x -¾)+ tan(x -¾) ]~ 

= Y✓2f log{sec¾ + tan¾)-Log{sec¾-tan¾}] 
= Y✓2·log( ✓2+ 1)-log( ✓2-1) 

( ✓2 + 1) ( ✓2 + 1) 
= Y✓2·log ( ✓2-1)( ✓2 + 1) 

= V ~-log ( ✓2 + I) 
2 

/ -.12 2-1 

= f ✓2 · log( ✓2 + 1) 

:. l=~x 1•log(✓2+1) 

= ~-log(✓2+1) 

Example 13.: Show that 



½ r,-
Let I= J -vtanx dx 

0 ✓sinx+ ✓c<m 
Solution: ... (1) 

= 1 ,jsm('Yz-x) dx 

o ✓sin(1Yz-x) + ✓cos(7fz-x) 
By property (iv) 

=1 ✓c<ITT dx 

~ ✓cosx + ✓sinx 
... (2) 

Adding (1) and (2) we get, 

1 ✓sinx 1 ✓cosx 
2/ = J----dx + J-==-------== dx 

0 ✓sinx + ✓cosx O ✓cosx + ✓sinx 

=1 [~+✓cou]dx 
0 ✓smx + ✓cosx 

½ 
= I dx 

0 

1t 
= 

2 

1t . I= -.. 4 

½ dx 1t 

Example 14.: Show that h 
1 
+ ✓co1x = 12 

½ 
Solution : Let I = [ dx 

¼l + ✓cotx 

. ½ [siiu 
= h .Jsinx + .Jcosx dx 

= 1 ,jsm(¾ + 3/J-x) . dx 

¼✓sin{7¼+3/3-x)+ ✓cos(7¼+3/3-x) 

... (1) 

... (2) 

Integration 
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By property (iv) 

=1 Joosx dx 
% ✓COSX + ✓sinX 

... (3) 

Adding (1) and (2) we get, 

½ r:- % ~ 
21 = J vsmx dx + J vcosx dx 

¾ .Jcosx + .Jsinx ¾ .Jcosx + .Jsinx 

1t 1t 
= ---

= 

3 6 

1t 

6 

1t 
I= -

12 

½ dx 1t 
Example 15.: Show that J ------

a2 cos2 x+ b2sin2 x 2ab 
0 • 

½ dx 
Solution : Let I= J ---- - -

a2 cos2 x + b2 sin2 x 
0 

½ sin2 xdx 

= J a2 + b2 tan2 x 
0 

Dividing Numerator and denominator by cos2 x 

½ 
= f a2 +b:tan2 x 

0 

Putting tan x = t, sec2 x dx = dt 



Wherex=O t = O whenx=1t/ t=oo , ' /2' 

1 COJ dt 

= b2 (a)2 
0 _ +t2 

b 

= :b [ tan-100-tan-10] 
1 7t 

=-x-
ab 2 

1 dx 1t 

j a2 cos2 x + b2 sin2 x - 2ab 
0 

Example 16.: Prove that r X tanxdx = 7t(~ 1t - l) 
Jo secx + tanx 2 

Solution : Let I - j x tanxdx 
0

secx+ tanx 
lt • 

=J xsmx dx 
0 1 +sinx 

(Proceed as solved example - 9) 

Example 17 .: Prove that 
¾ 1t 
Jlog(l + tanx )dx=-log2 
0 8 

¾ 
Solution : Let I = J log ( 1 + tanx) dx 

0 

% 
= J log{l+tan(¾-x)}dx 

0 

= 1 log{l + _tan--'-¾_-tan_x} 
o 1 + tan¾ tanx 

... (1) 

By property (iv) 

integration 
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½ ( 1 tanx) =flog 1 + - dx 
0 

1 + tanx 

= 1 log(l + tanx + 1-tanx)dx 
0 

1 + tanx 

¾ ( 2 ) =flog -- dx 
0 

1 + tanx 

Adding equation ( 1) and (2), we get 

2/ =11og(l + tanx )dx + 1 log( 2 
)dx 

0 0 I+ tanx 

¾ 
= f [1og(2)]dx 

0 

¾ 1t =[x]0 
4 log2 = -log2 

4 

1t 
/=-log2 

8 

EXERCISE 11.1 

Prove the following : 

~ 1t 
Q.1.: J log(cosx)dx=--log2 

0 2 

½ (cosx) 
Q. 2. : f ( . )( . ) dx= 2 log2- log3 

0 1 + smx 2 + smx 

I 

Q. 3. : f tan-ix dx = 1t - ! log2 
0 4 2 

2 dx I 
Q. 4.: f --2 = 21og2- - log10 

1 l+x 2 

a dx 1t 
Q. 5. : f ----:== -

o x+ ✓a2 +x2 4 

f
a log(l + x) 1t 

Q. 6. : ( ) = - log2 
0 I+x2 8 

... (2) 



1t xdx 
Q. 7·: J 2 2 

O a -COS X 

¾ xdx 1t 
Q. 8.: J - ~-- -log2 

0 
l + cos2x + sin2x 16 

00J log(l + x
2

) dx _ 
Q. 9. : ( ) - 1t log2 

o 1 +x2 

Q. 10.: 
½ xsmxcosx 1t 2 

! (sin4 x+cos4 x) 16 

½ sin½xdx 
Q.11.: J ½ ½ 

0 sin 2 W + COS 2 X 

Q. 12.: J
n X • dx dx = 1ta 

0 
1 +cosasinx sina. 

I · - I 

Q. 14.: J sm x dx= 1t log2 
O X 2 

1t • 

a>O 

Q, 15.: J XSID.X dx= : tan-I ✓2 
0 

2+cos2x -v2 

1t • 

Q. 16. ! J XSID.X 
2 

dx= !!:_ tan-I 0., (a< 1) 
l+a 2 cos x a 0 

Q. l?.: 1 sinx+cosx dx= "+-1 log(✓3 + lJ 

0 
cos2 x+sin.4 x 4 ✓3 ✓2 

ao (x+!) 
Q.18.: J log ~ dx= 1tlog2 

0 l+x · 

½ xsin.xcosx n 2 
Q. 19. : J log . 4 4 dx= -

O SID. X + COS X 16 

lntegrati. 

Self-Instny;tional M@rd#l 
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CD xdx 1t 

Q.20.: J log ( t=-
0 (l+x) l+x2 4 

3.12 DEFINITE INTEGRAL AS THE LIMIT OF A SUM 

Definition 14.1 :If f be a single real valued continuous function of independent 
variable x, in the mterval [ a, b ], where b > a and if the interval ( a, b ], is subdivided 
into n equal parts, a+ b,a + 2h, a+ 3h, .. . ,a+ ( n - 1) h, then, 

b 

ff( x) dx = limh➔O h [ f( a) + J( a+ h) + f( a + 2h) 
a 

+ ... +J{a+(n-l)}h] 

= lim11➔0 h[f(a) + f( a+ h)+ f( a+ 2h)+ ... 

+ ... +f{a+(n-l)h}] ... (1) 

b-a 
Where h = - , or b = a+ nh, is called definite integral as the limit of a sum. 

n 

Equation (1) can also be written as-

. J f( x) dx = lim1s➔0 h ~f( a+ rh) 
a r=O 

= lim11--+00 h ~ f (a+ rh) 
r=O 

Further if ! F(x) = f(x) Le. f J(x )dx = F(x) then, 

J f(x )dx = limh➔O h~f(a+ rh) =F(b)-F(a) 
a r=O 

Note : Integration by summation is also called integration from the first principle or 
integration ab initio. 

SOLVED EXAMPLES 

Example 1 : Evaluate f :X dx as the limit of a sum. 

b-a 
Solµtion : Here /( x) = x, - = h 

n 

We ·know that, 
6 
f f(x)dx =lim11--+00 h[f(a)+ f(a+ h) + f(a+2h) 
a 



+ ... + /{a+(n-l)}h] 

:. J: xdx = limn-+«> h[ a+ a+ h + a+ 2h+ ... a + (n - l)h] 

= limn-+«> h [ a + a+ ... n times + h{ I + 2 + 3. .. ( n - 1)} ] 

: Jim,_,.,+•+ h,(n ~l)n l 
: Jim,_,., [ nah + h' n( n2-1)] 

( ) ( ) 
2 '(I· '(I (1-!) . b-a b-a n 

= limn-+«> '(la-"-----'- + l 
'(I '(I 2 

Example 2 : Evaluate f x2 dx from the definition of definite integral as the limit of a sum. 

Solution: We know that from the definition­
b 

J f(x )dx =limn~ h[f(a)+ /( a+ h)+ ... + f{a + (n-I)}h] 
a 

2 2-1 1 
Here a=l,b=2, f(x)=x, h =-=-

n n 

:. Ii2 x2dx = lim11-+«> h[12 + (1 + h)2 + (1 + 2h}2 + ... {1 + (n-l)h}2] 

= limn-+«> h[l + 1+ ... ntimes + (1 + 2+ 3+ ... (n-I)2h 

Integration 

Seif-1,gtractigtuu Mqtgipl 

m 
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= limn~ .!_[n + 2 . .!. . n(n- 1) + _1. ( n -1)n(2n -1)] 
n n 2 n2 6 

2 =1+1+-
6 

1 =2+-
3 

7 
= 

3 

E:s:ample 3 : Evaluate 1 ez dx as the limit of a sum. 

Solution : By definition we have -
b 

J f(x)dx =limn~ h[f(a)+ f(a+ h)+ ... + J{a+(n - l)}h] 
a 

2-0 2 
Here a = 0, b = 2, f( x) = eX, h = - = -

n n 

: . .r: e'dx = limn-+«> h[ eo + e°+h + e0+2h + ... +/n-l)h] 



Example 4 : Evaluate Ji2 (x2 + x) as,the limit of a sum. 

Solution : By definition we have -
b 

f J(x)dx =limn-.«> h[f( a)+ f( a+ h )+ ... + J{a+ (n-l)}h] 
a 

2-1 I 
Here a=I,b=2, h=-=- &f(x)=x2 +x 

n n . ·. r ( x2 + x) dx = limn-.«> h[ (12 + 1) + ( 1 + h) 2 
+ ( 1 + h) + ( 1 + 2h) 2 

+1 +2h+ ... +(1 + ( n-l)h)2 
+ {l + (n-l)h}] 

= limn-.«> h [ I 2 + 12 + I 2 + ... n times + 1 + 1 + 1 + ... n times 

+h2{12 +22 +32+ ... (n- 1)2
} 

+2h[l +2+ 3+ ... ( n-1) 

+ h(l + 2+ 3+ ... ( n-1))}] 

:. {'(x' +x)dt= Jim,_ h[(n+ n)+h' ( n-1):(2n-1) +2/•~ l)n 

+h· (n~l)n] 

n3 (1-.!.)(2 -.!.) n
2 (1 -.!.) 

. 1 1 n n 3 n 
= Inn - 2n+ - - ~~-----'-+ -•-'----'-

n---.«> n n2 6 n 2 

n
3 (1-.!.)(2-.!.) n

2 (1-.!.) 
. 11 n n 3 n 

=hm 2nx-+--~~-----'- +-•--
n~ n n3 6 n2 2 

1 2 
=2+-+-

3 3 
23 

=-
6 

Example S : Evaluate J: cosxdx as the limit of a sum. 

Solution : Here/( x) = cosx. By definition we have -
b 

f f(x)dx =limn~ h[f(a) + f(a+ h)+ f(a+2h)+ ... + J{a+(n - l)}h] 
a 

Integration 

S,U:.Insrr,,ctional M11terilll 
m 
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EXERCISE 12 .1 

Evaluate the following integrals as the limit of a sum : 
2 4 

, Q. 1. : J X dx . Q. 2.: J {x2 -x)dx 
I 0 

b b 1 
Q. 4.: J exdx Q. s. : f 2 dx 

a a X 

4 

Q.3.: J(x+e2x)dr 
0 

b 

Q. 6.: f sinxdx 
a 

2 ¾ 
Q. 7.: J sec2 xdr 

Yi 
Q. 8. : f sin8d9 Q. 9.: J {3x2 

+2.t)dr 
0 

b 

Q. JO.: J sin2 xdx 
a 

(1) 
3 -
2 

(2) 
27 
2 

0 

1 

Q. 11.: J (3x-2)dt 
0 

ANSWERS 

(4) 

(6) cosa~cosb (7) (8) 1 (9) 10 

(10) !( b-a)+ l(sinacosa-sinbcosb) 
2 2 · 

) 

3.13 APPLICATION OF DEFINITE INTEGRAL TO FIND THE 

SUM OF INFINITE SERIES. 

(S) 
1 1 

a b 

In previous article we have expressed the definite integral as the limit of a sum which 
is nothing but sums of series as definite integral. 

We-have 



f f(x )dx = limh-+<Xl hf f(.a + rh) 
r=:0 a 

Where b-a = nh 

Putting a"" 0, b = 1, we get 

1 
nh = 1-0 = 1, :. h = -

n 

15.1 Rule to find the sum of the series : 

First we find the rib term of the series and express it as.!.. f{ r I\. Then the series can be 
n Vnl 

written as lim11--+«> L ~!{½). The corresponding definite integral can be obrained 

1 /8 I 
by replacing ½, by x and - by dx and limlt-+al L by J, -

n r=:O 6 

SOLVED EXAMPLES 

Example l.: Evaluate lim11-+al [-
1
- +-

1
-+ ... +-

1
] 

n+ 1 n+ 1 2n 

Solution: 
. 1 

The general terms (rth term) = -­
n + r 

1. ~-} ::::l;m } 
1m.11~ L u..u..a.,.-+a) ( , /\ 

r=:I n + r n 1 + 'in} 

The given series can be written as 

. 1[ 1 1 1 l = lim.11~;; --1 + --2 + ... +--n 
1+- 1+ - 1+ -

n .n n 

Pu . r ndl dx tting - = x, a - = , 
n n 

when r = h, x = % ➔ 1 as n ➔ oo 

Integration 

Sdf-lnstrHf#onaJ M'1ierlal 
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: . I = r1 
~

1
- dx = [ log ( l + x)] 01 

Joi+x 

= log2-logl 

=log2 

Example 2.: Evaluate limn~ [-
1
- +-

1
-+ ... +-

1
] 

n+ 1 n+2 6n 

Solution : The given series can be written as 

limh~ ~[-
1
- 1 +~+ ... +~] 

l+- 1+ - 1+-
n n n 

By putting!__= x, and .!. = dx, 
n n 

when r = 1, x = .½ ➔ 0 as n ➔ oo 

Sn 
and r = Sn, x ➔ - = S n ➔ ao 

n 

15 dx ]5 I= - =[log(l+x) 
Ol+x o 

= log6-logl 

=log6 

. [ n+l n+2 1] Example 3.: Evaluate hmn~ 
2 2 

+ 
2 2 

+ ... +-
n +1 n +2 n 

Solution : The given series can be written as 

. [ n+l n+2 n+n ] 
hmn~ 2 2 + 2 2 +. · .+ 2 2 . 

n +1 n +2 n +n 

n+n 
(Last term = 

2 2
) 

n +n 

[ 

1 1 l 1+- 1+ -
. n n n 1+1 

= llilln~ 2 ½ + ½ + ... +- -
n 1+ 1 1+1 1+1 

. n2 n2 



B . r d 1 y puttmg - = x, an - = dx, 
n n 

when r = l, x = Yn ➔ 0 as n ➔ oo 

when r=n, 
n 

x ➔ -=1 
n 

r1 1 dx r1 x 
= Jo 1 + x 2 + Jo l + x 2 

= [tan-1 xt +f (1og{l+x
2
)]~ 

= [tan-1-tan-1o]+~[log(l+l)-logl] 

7t 1 
= - +-log2 

4 2 

Example 4.: Evaluate limn-+<0 .!. [ ( n + 1) + ( n + 2 )+ .. . +( n + n)] Y,; 
n 

Solution : The given series can be written as 

Talring log on both sides, we get -

log A = lim._ ;; [ log( I+;; )x log( I+~}· . .x log( I+~;)] 

= limn-+<0 I! log(l + ~) 
r=l n n 

B 
. r 

y putting - = x, 
n 

and .!. = dx, 
n 

when r = 1, x = ,Yn ➔ 0 ( n ➔ oo) 

when r=n, 
n 

x ➔ -=1 
n 

Integration 

Sdf-llUfnu:fioHI Millffl9/ 
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Taking unity as first function and log ( 1 +x) as second fuction and integrating by 
parts-

or 

logA =.Clog(l+x)dx 

= [x log( 1 + x) )
0

1 
- f 1 ~ dx . 

Jo1+x 

= log2- r1 (1--1
-) dx Jo l+x 

= log2 - f 1 dx + r1 
_ l_ dx 

Jo Jo l+x 

= log2-[x]~ +[log(l+x)]~ 

= log2 -1 + log2 = 2 log2 -1 

= -1 + log4 

= -1 + log( 2 x 2) 

log A ;= -1 + log 4 

or logA-log4 = -1 

or 

A 
log- =-1 

4 

A -I 
-=e 
4 

:. A=i 
e 

. [ n! ]Y,; Example S.: Evaluate lim.11~ ;,; 

Solution : We have 

n! n( n-l)(n-2) .. J •21 
-=-------

. [n!]Y,; . [l 2 3 ")/4 :. lim11~ - = bm11~ -x-x-... -
n" n n n n 

Let . [1 2 3 "]¼ A =lim -x-x- -11-+<:o ••• 
n n n n 



Taking log on both sides, we get -

1 [ 1 2 n] logA =- log-+ log-+ .. .log-
n n n n 

By putting !.. = x, and _!_ = dx, and 
n n 

when r = 1, x = Yn ➔ 0 ( n ➔ oo) 

n 
r=n, x= - =1 

n 

log A = J~ logx 

= [x logx -x ]~ 

= llogl - 1-0 

= -1 

A = e-1 = ! 
e 

EXERCISE 13.1 

Evaluate the following integrals as the limit of a sum : 

. ( 1 )( 2
2 
J ( n2 JY,; Q.1.: limn~ 1+ n2 1+~ - .. . 1+~ 

. 1 1 1 · 1 
Q.3.: limn~-+-===+--=== + ... +-===== 

2n ✓4n2 -1 ✓4n2 -4 ✓3n2 +2n - 1 

• l' l [1P 2P P]- l Q. 4 •• l.Dln~ --1 + + .. . n - --
np+ p+l 

. 1 [ 1t 21t n1t] Q. S. : 11.Dln~ - tan-+ tan-+ ... tan-
n 4n 4n 4n 

Integration 

Sdf-ln&w119na/ M'lftrlql 
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Q.7. : limn-.«>-+ - +--+ ... - -. [l l 1 1 ] 
n n + 1 n + 2 n + 2n 

Q.10.: . [( I)( 2't( 34r ( n•r ] limn-.«> l + 7 1 + n 4 1 + 7 .. . l + 7 

ANSWERS 

1!-½ (2)-1+✓5 1t 1 (1) 2e 2 (3) (4) 
6 p+l 

(6) ~ (7) log3 (8) 1 -1 2 (9) !ran1 -tan 
8 2 2 

(5) 
2 
-log2 
1t 

(10) 
1t2 

e-
48 



4 
Consumers and 
Producers Surplus 

Chapter Includes: 
1. Consumers' Surplus 
2. Producers' Surplus 

4.1 CONSUMERS' SURPLUS 

A _ demand curve for a commodity shows the amount of the 
commodity that will be bought by people at any given price p. 
Suppose that the prevailing market price is p0 • At this price an 
amount ~o of the commodity determined by the demand curve will 

Consumers and 
Producers Surplus 

Self-lnstrr«:tlonfll Mtz1erial 
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be sold. However there are buyers who would be willing to pay a 
price higher than p 0 • All such buyers will gain from the fact that the 
prevailing market-price is only p

0
• Tiris gain is called Consumers• 

Surplus. It is represented by the area below the demand curve 
p = f(x) and above the line p = Po. 

Thus Consumers' Surplus, 

CS = [Total area under the 
demand function bounded by 
x=O. x=x

0 
and x-axis-Area 

of the rectangle OAPB] 

CS - J f(x) dx - p
0
x

0 
0 

Example l 

y 

0 Xo 
Quantity 

Fig. 4.1 

X 

Find the consumers' surplus for the demand function 
p = 25 - x - x 2 when p0 = 19. 

Solution: 

Given that, 

The demand function is p = 25 - x - x 2 

Po= 19 
. 19 = 25 - X - x 2 

⇒ x 2 +x-6 =0 
⇒ (x + 3) (x- 2) = 0 
⇒ x = 2 ( or) x = -3 

Xo = 2 
p0 x 0 = 19 x 2 = 38 

CS = J f (x) dx - p0 X 0 
0 

2 

= J(25 - x - x2)dx-38 
0 

[ 2 3 ]2 = 25x-..X.:.-.L -38 
2 3 o 

[demand cannot be negative] 

= [25(2) - 2 - ~ ] - 3 8 = ;2 units 

Example 2 

The demand of a commodity is p = 28 - x2 Find the 
consumers' surplus when demand x0 = 5 



Solution : 

Given that, 

The demand function, p = 28 - x2 

whenx0 = 5 

Po = 28-25 

=3 

.·. PoXo = 15 

CS - J f(x)dx - PoXo 
0 . 

5 

- f (28 - x2)dx - 15 
0 

- [28x-1-J: - 15 

= [28 X 5 - 1;5] - 15 = ~Quoits 

Example 3 

The demand function for a commodity is p = 12
3 

. Find 
x+ 

the consumers' surplus when the prevailing market price is 2. 

Solution: 

Given that, Demand function, p = xl~ 
3 

Po = 2 ~ 2 = __lL x+3 
or 2x + 6 = 12· or x = 3 x 0 = 3 ~ p

0
x0 = 6 

CS = J f(x) dx - PoXo = f--1L. dx - 6 
o ox+3 

= 12 [log( x+3)]~ - 6 . 

= 12Dog 6-log 3]-6 = 12 log~ -6 = 12 log 2-6 

4 .2 PRODUCERS' SURPLUS 
A supply curve for a commodity shows the amount of the 

commodity that will be brought into the market at any given price p. 
Suppose the prevailing market price is p 0 • At this price an amount 
Xo of the commodity, determined by the supply curve, will be offered 
to buyers. However, there are producers who are willing to supply 
the commodity at a price lower than p0 • All such producers will 
gain from the fact that the prevailing market price is only p0 • Tiris 
gain is called 'Pr¢ucers' Swplus'. It is represented by the area 

Consumers und 
Producers Surplus 
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above the supply curve p = g(x) 
~d below the line p = Po· 

Thus Producers' Surplus, 

PS = [ Area of the whole rectangle 
OAPB - Area under the supply 
curve bounded by x = 0. x ;:: Xa 
and x - axis] 

.·. PS = PoXa - j g(x) dx 
0 

0 ~ A 
Quantity 

Example 4 Fig4.2 

Po 

The supply function for a commodity is p = x2 + 4x + 5· 
where x denotes supply. Find the producers' surplus when 
the price is 10. · 

Solution: 

Given that, 

Supply fu.nctio~ p = x 2 + 4x + 5 

For p0 = 10, 

10 = x2 + 4x + 5 ~ x 2 + 4x - 5 = 0 

=> (x + 5) (x - 1) = 0 => x = -5 or x = 1 

Since supply cannot be negative, x = -5 is not possible. 

• X = 1 

p0 = 10 andx0 = 1 => p0 x0 = 10 

Producers' Surplus, 

PS= p 0x0 - J g(x)dx 
1 0 

= 10 - J ( x 2 + 4x + 5) dx 
0 

= 10 - f~+ .il.:..+ 5x]
1 

t3 2 0 

= 10 - [ ~ +2+5] = ~ units. 

Example 5 

Find the producers' surplus for the supply function 
p = x2 + x + 3 when x0 = 4 . 

Solution : 

Given that, 

supply function p = x2 + x + 3 

when x0 = 4. p 0 = 42 + 4 +3 = 23 

:. PoXo = 92. 
Producers• Surplus 

4 

PS= p
0
x

0 
- J g(x)dx 

0 
= 92 - J (X2 + X + 3) dx 

0 



= 92 - r ... 3 +.X:..+3x]
4 

L3 2 0 

=:= 92 - [ ;4 + 1,I +12] = 1
;

2 units. 

Example 6 
Find the producers' surplus for the supply function 

p = 3 + x2 when the price is 12. 

Solution: 
Given that. 

supply functio~ p = 3 + x2
• When p 0 = 12, 

12 = 3 + x2 or x 2 = 9 or x = + 3 
Since supply cannot be negative, 

X = 3. i.e. X0 = 3, 
.·. PoXo = 36. 

Producers' Surplus, 

PS= p
0
x

0 
- J g(x) dx 

3 0 

= 36 - J ( 3 + x2) dx = 36 - [3x + ; 3 
]

3 

0 0 

= 36 - [9+ ; 7 -0] = 18 units. 

Example 7 

The demand and supply functions under pure 
competition are pd = 16 - x2 and Ps = 2x2 + 4. Find the 
consumers' surplus and producers' surplus at the market 
equilibrium price. 

Solution : 

For market equilibrium, 
Quantity demanded = Quantity supplied 

==> 16 -x2 = 2x2 +4 ==> 3x2 = 12 
==> x 2 = 4 ==> x = + 2 But x = -2 is inadmissible . 

. ·. x = 2 (i.e.) x0 = 2 

Po = 16 - (2)2 = 12 
PoXo = 12 x2 = 24. 

Consumers• Surplus, 

CS = J f(x) dx - p 0x 0 
0 
2 

= J ( 16 - x2
) dx - 24 

0 

= [16x-13 
]:- 24 = 32- ~ - 24 = 1

3
6 units. 

Producers• Swplus 

PS = p0x 0 - J g(x) dx 
0 

Consumers mtd 
Producers Surplw· 
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11) 

12) 

2 

= 24 - J(2x2 + 4) dx = 24- [2f +4x): 
0 

= 24 -
2

; 8 - 8 = 3
; units. 

EXERCISE 

The area of the region bounded by y = x + 1 the x - axis and 
the lines x = 0 and x = 1 is 

(a) i (b) 2 (c) l 
2 (d) 1 

The area bounded by the demand curve xy = 1. the x - axis, 
x = 1 and x = 2 is 

(a) log 2 (b) log i (c) 2 log 2 (d) i log 2 

13) If the marginal cost function MC= 3e 3 x, then the cost function is 
lx 

(a) ~ (b) e 3 x+k (c) 9e3 x (d) 3e3 x 
3 

14) If the marginal cost function MC = 2 - 4x , then the cost function 
is 

(a) 2x-2x2+k (b) 2--4x2 · (c) ~ --4 (d) 2x-4x2 

15) The marginal revenue of a finn is MR= 15 - 8x. Then the 
revenue function is 

16) 

17) 

18) 

(a) 15x--4x2+k (b) 1; -8 (c) -8 (d) 15x - 8 

The marginal revenue R'(x) = _Ll then the revenue function is 
1 x+ 1 1 

(a) log lx.+11 + k (b) - (x+l) (c) (x+ l)2 (d) log x+l 

The consumers' surplus for the demand function p = f(x) for 
the quantity ¾ and price Po is 

(a) J f(x)dx - Po¾ (b) J f (x)dx 
0 0 

(c) p
0
Xo-J f (x)dx (d) J f(x) dx 

0 0 
The producers' surplus for the supply function p = g(x) for the 
quantity¾ and · price p 0 is 

(a) 1 g (x) dx - PoXo 

(c) 1 g(x) dx 
Po 

(d) J g(x) dx 



5 Matrices and Determinants 

Chapter Includes: 
1. Matrices to describe NETWORK 
2. OrderofaMatrix 

3. Types ofMatriCES 

4. AlgebraofMatrices 

5. Transpose of a Matrix 

6. addition and subtraction of matrices 

7. Multiplication of Matrices 

8. Symmetric and Skew -Symmetric Matrices Orthogonal Matrix 

9. Nilpotent Matrix 

10. Periodic Matrix 

11. Idempotent Matrix 

12. InvoluteryMatrix 
13. Determinant of a Square Matrix 

14. Singular and Non-Singular Matrices 

15. Minors and Cofactors 

16. Expansion of a determinants 

17. Elementary Properties of Determinants 

18. Application of Determinants 

19. Adjoint ofa Square Matrix 
20. Inverse ofa Matrix 

21. Elementary Operations on matrices 

22. Echelon form of a Matrix 

23. Solution of System of Linear Equations by Matrix Method 

24. Solution of System of Linear Equations by Elementary 

Transformation (Operations) 

INTRODUCTION: 

Whenever we perform a journey by train/bus, we go to railway station/bus station and 
see the time table of trains/buses for our destination. The time of arrival and departure of 
trains/buses along with destinations are arranged in a rectangular arrays. 

Matrices and 
Determinants 
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The student seating in class/examination hall, the cadets in parade ground, the 
price list of different articles in a shop, the 
days and dates in a calendar are arra ged in a 
rectangular arrays (rows and column). 

The table is the shortest method of finding 
a lot of information. The information can be 
written without heading as shown below : 

Let us consider the foHowing table 

Seating arrangement of students in an 
examination hall. 

:~ 
SUN 

MON 

TlJE 

WED 

THU 

FRI 

SAT 

05 12 19 

06 1'3 20 

07 14 21 

01 08 15 22 

02 09 16 23 

03 10 , 17 24 

11 r 1-8 r2s-04 

1 6 11 16 ;~ 
2 7 12 17 22 , 

3 8 13 18 23 

4 9 14 19 24 

5 IO 15 20 25 I 
I 

(iii) Price list of articles in three shops (in paise). 

Shop 

A B C 

Articles 

Tea 40 42 44 

Sugar 60 62 64 

Mille 42 44 46 

Sliced bread 10 12 15 

The above i.clormation can be written as : 

Let us write the above information in the square brackets for good looking : 

.I 

1 6 11 16 21 
2 7 1.2 17 22 
3 8 13 18 23 
4 9 14 19 24 
5 10 15 20 25 

40 42 
60 62 
42 44 
10 12 

44 
64 
46 
15 

26 

27 

28 

29 

30 

-·-



1 6 11 16 21 
2 17 

40 42 49 
7 12 22 

13 18 and 
60 62 64 

3 8 23 
4 24 

42 44 46 
9 14 19 

5 10 15 20 25 
10 12 15 

The rectangular arrangement of numbers inside the square brackets ( more precisely 

bracket~), is called Matrix. 

5.1 MATRICES TO DESCRIBE NETWORK 

Let us consider these cities A, B and C which are connected as shown in the figure. 

It is seen clearly, that there are three routes in going 

from city A to city B. There is no any route from city 

A to A, and city B to B, but there are routes from city 
C to city C. 

Let us denote no routes, one route, two routes, and 
A 

three routes by the numbers 0, 1, 2, and 3 
respectively 

To To 
A B C A B C 

T 
3 

~] 8 
A 0 3 I 

s B 3 0 ~ B 3 0 2 0 
<!:l 

Cl 2 C 2 

The above information can be represented by a matrix, which tells that matrices are 

the storage of information. 

Clearly it is known that the geometrical model has been converted in to arithmetical table. 

There are so many such examples which can be obtained from our practical life problems. 

Definition 1.1: A rectangular array of numbers having m and n-columns which 

represents m x n elements, is called a matrix of order m x n. 

The matrices are generally denoted by capital letters and their elements by small 

letters of English alphabets. 

The m x n elements of a matrix can be written as : 

· Matrices and 
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all a12 013 ......... aij ... aln 

0 21 °22 °23 · ····· .. · aij ... a2n 

A= ................................... . 

ail a;2 a;3 ...... ... aij ... ain 

here aii represents three elements of ith row and /h column. The suffix 'i' represents 

row and suffix 'i' represents column. Thus (i,jl' the element of first row are 

((a11 ,a12 , ••• ,a1nl and that of first column are: 

all 

a,2 

The Matrix~ can also be written as A= [ay]ml<JI 

where i = 1,2, ... ,m and 

j = 1,2, ... ,n 

The horizontal lines ( ➔) and vertical lines (-l-) in the matrix are called row ( row 
vectors) and column (or column vectors). 

5.2 ORDER OF A MATRIX 

The order of a matrix having m rows and n columns is m x n. 

For example 

The element '11' occurs in third row and second column. 

Let A=[~ : 1:J is a 3 x 3 matrix, (as it has three rows and three columns. Here 

5 11 13 3x3 

the element '11' occurs in the third row and second column. 

5.3 TYPES OF MA TRICES 

(i) Horizontal Matrix: A matrix in which the number of rows is less than the number of 
columns, is called a Horizontal Matrix. 



For Example: [! : !}• a horizonllll matrix because it bas tliree rows and two 

columns. 

(ii) Vlrtical Matrix : A matrix m which the number of rows is more than the number of 
columns, is called a Virtical Matrix. 

For Example : 

al a2 a2 

b1 b2 b3 
is a virtical matrix because it has four rows and three columns. 

C1 C2 C3 

d1 d2 d3 

(iii) Square Matrix : A matrix in which number of rows is equal to the number of 
columns, is called a square matrix. 

The matrix A = [ a; tX11 is called a square matrix if and only if m = n, we write-

And B ..:.. [1 "3] 
4 S 2x2 

au ,a12, .. . , aij,aln 

au,a12,·· ·,· .. , a211 
A = .... ................ . is a square matrix of ordem ( or n x n) 

a111,an2 , .. .. •. a/111, 
Jl)(JI 

are examples of square matrices . 

. Diagonal elements of a Square Matrix : The elements [ a11 ,a22 , a 33] in B, the 

element [1, 5] in C and [ 6, 4, 11] in D are the diagonal elements if these squares 
matrices. the diagonal elements o_f A are [ au, a12 ,_. .. , alM].as [ a11J. 

(vi) Zero or Null Matrix : _A matrix in which all the elements are zero, is called a zero 
matrix, or a null matrix. · 

· .. [000] 
Example :[0ltxt' . [~, 0]1><2' . 0 0 0 ·. , 

. 2x3 [
o o · ol 
0 0 0 . 

0 0 0 3x3 

are the examples of null matrices. 

(vil) Diagonal Matrix : A square matrix in which all the elements are zero except the 
diagonal elements · 
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Example: 

is an example of diagonal matrix. 

Particular Cases : The diagonal elements of a diagonal matrix may also be zero. 

For example 

. [o o] 
A= o"-s · 

2><2 [
O'-0 OJ c = o o"-o 
Q Q Q 3x3 

are also diagonal matrices, while their diagonal elements are zero. 

Scalar Matrix : A diagonal matrix in which all the diagonal elements are equal, is 
called a scalar matrix. 

Example: 

r
3 o o] 

B = 0 '-3 0 , 

0 0 3 r
o o o] 

C = 0 0 0 

0 0 0 

are scalar matrices as the diagonal elements is A are 4, in Bare 3, and in Care 0. 

Identity Matrix : A diagonal matrix in which the diagonal elements are equal to 1, 
is called an identity matrix or unit matrix. An identity matrix is denoted by I. 

[
I · 0 O] 

Example: 11 = [t]
1
xt' 12 =[l OJ , 13 = 0 '-. 1 0 

0 1 2x2 0 0' 1 
3x3 

are identity matrices. 

Note : An identity matrix is a scalar matrix as well as a diagonal matrix. 

Triangular Matrices : Triangular matrices are of two type~ : 

(a) Lower Triangular Matrices: A square matrix in which the elements above the main 
diagonal are all zero, is called a lower triangular matrix. 

Example: 

[2 OJ 
A - " J O lxl [

1 o-oi 
8=3 s'-o 

4 6 J M 

are lower triangular matrices. 



(b) Upper Triangular Matrices : A square matrix in which the elements below the main 
diagonal are all zero, is called a uper triangular matrix. 

Example: 

[2 3] A - ". 
0 0 2x2 [

l 2 31 ~: 
are upper triangular matrices. 

5.4 ALGEBRA OF MATRICES 

5.4.1 {0 Equal Matrices: Two matrices A= [ aij }B = [bij ]are said to be equal, if they 

have the same order and having the corresponding elements equal. 

A=[a-- ] , B=[b-- ] 
. IJ mx11 lJ mx11 

the A= B, if ai.i =bli (i,j)th element of A is equal to (i,j)th element ofB. 

Note : Same order means number of rows and the number of columns are equal in both the 
matrices. 

5.5 TRANSPOSE OF A MATRIX 

A matrix which is obtained by interchanging rows and columns of a given matrix is 
called transpose of the matrix. 

The transpose of a _matrix A is denoted by A' or AT. 

Ex~mple : Let A = [
1 2 5

] , then by interchanging row and columns of A, 
7 8 9 2x3 

We get A' ~[~ :1 
5 9 3x2 

, [1 2 5] Now transpose of A = = A 
7 8 9 

Thus, the transpose of a transpose of a matrix, is the matrix itself i. e : (A')' = A 

Thus we see that in the matrix A, the number of rows 2 changed to three rows in its 
transpose, and number of columns 3 are changed to two columns. 

5.6 ADDITION AND SUBTRACTION OF MATRICES 

(a) Addition of Matrices: If A and Bare two matrices having the same order, then they 
can be added and the resulting matrix can be obtained by adding the corresponding 
elements of the matrices A and B. The sum is denoted by A + B. 

for if [3 7 4] A= 
. 5 2 -1 2x3 [9 0 5] 

B = 2 3 4 
2

x3 
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then 7+0 4+5] 
2+3 -1+4 

7 9] 
5 3 2x3 

In particular, if B=[b·-] IJ IIIXII 

then A+B=[au +b .. ] 
~ IJ IIIXII 

(b) Subtraction of Matrices : In subtraction of Matrices of the same order, the difference 
of corresponding elements are obtained and the order of the resulting 
matrix is same as the order of the two matrices . . 

For if A=[: :i B=[! !L 5 7 2x3 

then 
[2-1 4-3 i 

A-B= 3-2 6-5 
5- 4 7-6 

~[: :L 
In particular, if 

then 

A =[a .. ] , B=[br] 
IJ IIIXII IJ · IIIX/1 

A-B=[a .-b .. ] 
IJ IJ IIIXII 

5.6.1 PROPERTIES OF MATRIX ADDITION : 

Property (i): Matrix addition satisfies the commutative property, 

As A+B =B+A 

If A= [ail]; B =[by] 

then (~j}',, element o{A + B =[au+ bil ]~d of B + A =[b!I +a(}] 

which are same as aii and bij are numbers and satisfy the commutative 
property of addition. 



Proof (I): 

Let A = [ail} B = [ bij] · then 

A+B=Qau.]+[buD =[ay +b0 ] 

=[by+ ai/] (Addition ofnwnbers is commutative) 

=B+A 

Property (ii): Matrix addition satisfies the associative property, 

i. e. A+(B+C) =(A +B)+ C 

If A =[aiJ]; B=[bij] and C=[cij] 
. . 

then (~j) th element of A+ (B + C) will be aij + (by +cu) 

andof(A+B)+C is[(aif+by)+ci/)] 

Proof (ii): 

Let C = [cii} then 

(A+ B)+ C =([aij ]+ [blj D + (ciJ] 
= [ aii +bi/]+ [ cij] (By definition of A+ B) 

= [ ( aiJ + biJ) + c ij] (Addition of numbers is associative ) 

=[(aij)+(by +cij)] 

=[a0 ]+[bil +·cif] 

·= [ aii ]+ ([bif + ell]) 

=A+(B+C) 

Property (iii) : Existence of Identity for Matrix Addition 

If A be a matrix of order m x n, and O be null matrix of he same order m x n, then 

A+O=O+A 

For A=[~~ :L 0=[~ ~ ~L 
Then A+O=[~ ~ :H~ ~ ~] 

=[I+ 0 3 + 0 4 + OJ 
5+0 7+0 9+0 
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And 

=[l 3 4] 
5 7 9 

0 +A= [o o o] + [1 3 4] 
000 5 79 

=[O+l 0+3 0+4] 
0+5 0+7 0+9 

[l 3 4] 
= 5 7 9 2x3 

A+O=O+A 

Proof (iv) : Existence of Additive Inverse 

For every matrix A,·there exists a matrix B of the same order that of A, such that 

A+B=O=B+A 

Where O is a null matrix whose order is equal to the order of A (or B). 

B is called additive inverse O or negative of matrix A. 

Proof (v) : Cancellation Law for Addition of Matrices 

If A, B, C are three matrices of the same order then 

A+B=A+C⇒ B=C (l) 

And B + A = C + A ⇒ B = C (2) 

Equations (1) and (2) show left cancellation law and right cancellation law 
respectively. 

5. 7 MUL Tl PLICATION OF MATRICES 

5. 7 .1 Multiplication of Matrix by a Scalar: Let A be any matrix of order m x n and k 
be a scalar (Complex or real). Then the matrix kA, which is obtained by multiplying 
each element of A by the scalar k is called scalar multiple of A. 

Example: 

Let A= [a--] 
IJ MXII 

an a12 a13 

a21 a22 a23 

aij . . . aln 

a2j ... a2n 

., . . 
am, am2 am3 . . . amj . .. amn 



Then 

ka11 ka12 ka13 • • · . kaij · · · ka1" 

ka21 ka22, ka23 .. . ka2j .. . ka2" 

:.A =[a .. ] then kA =[ka;,] 
lJ mxn !t mXII 

Particularly, If k = 3 and A = [
2 

- l 
5
] 

, 6 7 8 2x3 

Then 3A=[3xl 3x(-l) 3x5] 
3 X 6 3 X 7 3 X 8 

2
x3 

[
3 -3 15] 

= 18 21 24 2x3 

5. 7 .2 Properties of Multiplication of a Matrix by a Scalar : 

(i) Scalar Multiplication is distributive over matrix addition. For, if A and Bare any 
two matrices of the same order, then 

k (A + B) = kA + kB 

(ii) For any two scalar rand sand the matrix A of any order m x n, then 

(r+ s)A = rA + sA and 

,(sA) = (rs)A 

(iii) For any matrix A of order m x n and scalar k 

(-k)A =-{kA)=k(- A) 

(iv) For any matrix A of order m x n. 

(a) lA=A (b) (-l)A=-A 

(v) For any two matrices A and B 

-{A+B)=-A-B 

5.7.3 Multiplication of a Matrix by another Matrix: 

Two matrices A andB can be multiplied if the number of columns inA is same as 
the number of rows in B. And as such the matrices are said to be conformable for 
multiplication. 

If A be matrix of order m x n and B be matrix of order n x p then (Product) AB can be 
bt i d b t BA t b bt i d 
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fhe product of Matrices A and B of orders m x n and n x p respectively denoted by 4 

is or order m x p for · 

A=[a--] , B=[b--] , then C=[c--] 
IJ 111xn IJ nxp . . lJ mxp 

is given by-
n 

cij = r~ijbik = ailblk + ai2b2k + ... aur!Jtrk 
j==l 

cu=a;1hil==a;2h2c+, .. ainb~ 

= f aijbjk; i = 1,2 ... m ·k = 1,2 ... p. 
j=l 

= aiibjk, where i the dummy suffix. 
Diagrammatically 

.................... 

0m1~m2· ··"',nj; .. an111 _ bn1:··bnk··•bnp . 

Thus, to obtain C;t, we multiply each el~ent in the ;tit zero of A by the corresponding 

elements in / 1 column of B and find the sum of all the terms. matrix product AB,A 

is called pre-multiplier and B the post multiplier. 
Particularly, if 

[
l 3 4]· 

A = [
3 4 6

] and B = 5 9 4 
1 2 0 2x3 3 - 2 6 ' 

. 3x3 

Now AB=
346 

5 9 4 [
1 3 4] · 

[1 2 0 l., 3 -2 6 "' 

[
3xl+ 46 :+6x3 lx3+4x9+-6x(-2) 3x4+ 4x4t6<6 

= lxl+1x5+0x3 lx3+2x9+-0x(-2{ ~4+2x4+0x6 

[
41 27 64] . 

= 11 21 12 2x3 

5. 7 .4 Properties of Matrix Multiplication : 

(i) Associative Property 

For the matrices A B C of order m x n 1i x p and p x r respectively then 



(AB)C = (AB)C 

(ii) Distributive Property : 

(iii) 

For the matrices A, B, C of order m x n, n x p and n x p 

A(B+C)=AB.+AC 

i. e. Multiplication distributive addition. 

Matrix Multiplication is not always commutative : 

i. e. If A arid B are matrices such that AB and BA is defined, then it is not 
that AB=BA 

for [-7 2] 
B= 1 4 2x2 

necessary 

Since the both matrices have the same order, therefore AB and BA both are defined. 
Further-

[
-7 +2 2+8 ] [-5 10] 

AB= -21+4 ·6+16 = -17 22 

BA = [-7 + 6 ::-14 + .8] = [-1 -6] 
1+ 12 2+ 16 13 18-

Clearly AB-:;:. BA 

Note: (i) .If AB= BA, then A and Bare said to be-commute. 

(ii) If AB = -BA, the matrices A and B are said to be anti - commute. 

(iv) The product of two matrices A and B can be a zero matrix, it does not meant that 
either A or B is a null matrix or both the matrices are null. 

i. e. AB = 0 does not mean that either A= 0 or B = 0 or both be a zero matrix. 

For A- · B- · [
o 1] [3 4] 

- -02' -0 0 

=[0 x_3 + lx0 0_x 4+ lxO] 
Ox3+2x0 0x4+2x0 

= [ ~ ~] ~AB= 0, i.e. the product of two non-uro matrix is 

a zero matrix. 

5.8 SYMMETRIC AND SKEW.: SYMMETRIC MATRICES 

5.8.1 Symmetric Matrix : 

A square matrix is said to be symmetric, ff it is equal to its transpose. 

If A= A' then the square matrix of A is said to be symmetric. 
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Example: 

·: A= A' and consequently A is a symmetric matrix. 

If then A'J~ !: ~] 
lb2 a2 a3 

Hence A is symmetric. 

A == [: ; !] then 
[

a h g] 
A'= h ~ g 

g J C g J C 

And A = [r ! ~} fu~ A' = [ ! ~ l 
are examples of symmetrical matrices. 

5.8.2 Skew - Symmetric Matrix : 

A square matrix. is said to be skew-symmetric, if its transpose is equal to (- 1) times 
the matrix. 

If A is square matrix, and if 

A'= -A, then A is called skew symmetric. 

Example=[-~ : I],[-~ ; : ], and [ ~- -; -: ] 
-g - f O -a - C O - 6 8 0 

are example of skew-symmetric Matrices. 
Note : It is clear that the diagonal elements of a skew symmetric matrix are all zero. 

(Let A' = A, and A = [ a9] then A' = [ a fi J as A is skew symmetric. 

or 2 aij =0 

For diagonal elements i = j 

:, i.e. aij = 0 

a1 I = a22 = a23 . • • a,,,n = 0 

5.9 O~THOGONAL MATRIX 

A square matrix is said to be orthogonal if (j> the product of matrix and its transpose is 
equal to an identity matrix of the same order. 

&Jf[M(UC[iqna{Materig/ If A be a square matrix such that AA'= I then A is said be orthogonal. 
lM 
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SID (l cos (l l Example : Let A = . 
- COSCl SlilO. 

A'= [sina. - ~sa] 
cosa srna 

Now, AA':::: [sin a. C~S(l][sina. - C~S(l] 
-cosa. sma cosa. sma 

= [siri2 a.+ cos
2 
a - sina cosa + cosa sinal 

-cosa sina + sina. cosa cos2 a.+ sin2 

=[~ ~] =1 

5.10 NILPOTENT MATRIX 

A square matrix A is said to be nilpotent matrix of index n, if A" = 0, where O is null 
matrix of the same order as A. 

In particular if A 2 = 0, then matrix A is called nilpotent matrix of ·index 2, 

[o o] . . Example : A = 
1 0 

, 1s a rulpotent of order 2. 

5.11 PERIODIC MATRIX 

A square matrix A is said to be periodic of period k, if Ak+II = A, when k is the least 
positive integer. 

Example : A = [~ 3 -; : :} is periOOc of period 2 

5.12 IDEMPOTENT MATRIX 

A square matrix is said to be idempotent if is square is the matrix itself. 

Let A be a square matrix such that A2 = A, then it is called idempotent matrix. 

Eumple :The mabix A { I ~~ J is an id~porent mamx 

5.13 INVOLUTERY MATRIX 

A square matrix is said to be involutery if its square is an identity matrix of the same 
order. 

If A is a square matrix and if A2 = I then A is called involutery 
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Example :The matrix A = 1 - 3 - 3 , is an involutery matrix. 
[

o 4 3] 
-1 4 4 

SOLVED EXAMPLE 

[ 0 -tanx / 2] d 'den . . rde Example 1 : Let A = an I, the 1 tity matnx of o r 2, then 
tanx /2 0 

prove that I+ A = (I - A) [
cosx 

secx 
-sinxl 
cosx 

Solution : I + A =[~ ol O -tan1 

1 X O tan-

= 

= 

2 

X 
1 -tan-

2 

tan~ I 
2 

0 

X 
tan-

2 

1 
X 

tan-
2 

X 
-tan- I 

2 

X 
-tan-

2 

0 

Now,· (l-A)[cosx -smxl 
secx cosx X 

tan-

X 
tan-

2 
[
~sx -sinxl 
smx cosx 

= 

2 

= [cosx + tan½ sinx -sin x + tan½ cosx ] 

-tan½cosx+sinx + tan½ sinx+cosx 

2X . 2 X sinx 12 . X X • X X sinx 12 2 X • 2 X 
cos - -sm -+ - -x2srn- cos-, -2srn- xcos-+--(cos - -sm -) 

2 2 cosx /2 2 2 2 2 cosx / 2 2 2 
tanx I 2 2 x . 2 x . x x sinx I 2 . x x 2 x . 2 x 
--(cos --srn -)+2sm-cos- , --x2sm-cos-+cos --sm -
cosx / 2 2 2 2 2 cosx / 2 2 2 2 2 



= 

= 

2X . 2 X 
cos -+sm -

. Jx/ 
2 

. X X . X X Slil / 2 
- sm- cos- +sm- xcos-- - -

2 2 2 2 cos½ 2 2 

. Jx/ 
. X X Sin / 2 

2 
. X X 

-sm-cos- + ----=-+ sm-cos-
2 2 cos2 fi' 2 2 

2
. 2X 2X , 2X 

sm -+cos --sm -
2 2 2 

1 sinx / 2 ( . 2 X 2 X) - sm - cos-
cosx / 2 2 2 

sinx / 2 ( . 2 X 2 X) . 2 X 2 X sm - cos - sm -+cos -
cosx / 2 2 2 2 2 

= 

X 
-tan-

2 

tan~ 1 
2 

EXERCISE 1.1 

1. Construct a 3x4 matrix whose elements are : 

2. 

3. 

4. 

s. 

6. 

7. 

8. 

(ii) a iJ = i + j ('") i lll a .. = ­IJ • 
J 

If A - -[
x-y 2x+z] [-1 
2x-y 3z+20 0 1

!} find x, y, z 

(iv) 
i- j 

a--=-
IJ i+ j 

IfA=[~ :]and B=[~ ~ ]- then prove that ( AB)' = B' A• where A• and B' 

are respectively transpose of matrices A and B. 

Show that the elements on the main diagonal of a skew-symmetric matrix are all zeros. 

If f(x) =x2 -Sx + 6 find f(A1 if A=[~ ~ ;] 
1 -1 0 

If A be a square matrix, show that! ( A + A') is a symmetric and ! ( A - A') is a skew 
2 2 

symmetric matrix. 

If A = [
3 

-
4
] find A 2 and show by mathematical induction that 

1 -1 

[
I +2n -4n] A" = 

2 
for every positive integer n. 

n 1- n 

[
cos8 sin8] If A = . 

8 8 
, find A 2 and show by mathematical induction that 

-stn cos 

11 [cosn8 sinn8] A == • 
8 8 

for every positive integer n. 
-smn cosn 

Determmam~· 
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9. 1 , B= l . 0 0 dABandBAandsbowthatA 2B+ B2A =A. oj [o o ot 
0 0 1 0 

5.14 DETERMINANT OF A SQUARE MATRIX 

Every square matrix A= [ aij ] is associated with a number called determinant of A, 

and denoted by del A orjAI or jaijj and sometimes also by the symbol /l. 

Thus only the square matrices have their determinant 

5.14.1 Determinant of l xl, 2 x 2 and 3 x 3 matrices: 

(i) Let A = [a] lid matrix 

Then del A = IAI = I~ = a 

(ii) Let A=[a,J] =[all a12 ] 
ix2 a21 a22 

Then delA =IAI= 
all a12 

= a11 x a22 -a12 x a21 
a21 a22 

a12 
(iii) [a" Let A = [ aij LxJ = a21 a22 

.IJ j 
a23 then 

a31 a32 a33 3x3 

all a,2 a,3 

del A =IAI= a21 a22 au 

a31 a32 a33 

= a11 ( a22 a33 - .az3 a32) - a12( a21 a33 -a23 a31) 

+a13(a21 a32 - a22 a31) 

5.14.2 The determinant of a diagonal matrix : The determinant of a diagonal matrix is 
equal to the product of diagonal elements. 

For 

and 



det A=t ;-~ ~+~ ; 

= 3 x(4 x5-0)-0(0x 5-0)+ Ox(0-0) 

=3x4x5 

Thus in general if ... 

all 0 0 0 all 0 

0 a22 0 0 au 
A= than del A= 

0 0 0 

0 a1111 

0 

0 

0 

0 

a,,.,, 

Then detA = a11 x aux a33 x ... a111,., which is the product of the diagonal elements of 
the Matrix A. 

5.15 SINGULAR AND NON-SINGULAR MATRICES 

5.15.1 Singular Matrix : If the value of the determinant of a square matrix is zero, it is 
called singular matrix. 

If A be a square matrix and IAI = 0, then A is called singular matrix. 

Example: A=[4 6
] jAjJ

4 
~=4x3-2x6 =12-12=0 

2 3 2x3 ~ 3I 

Let 

B =[: : ~!] for 
6 10 20 ~ 6 1~ del B = 4 8 16 

10 2 

8 16\ 4 
B= IO 2~-6 6 

= 2( 8 X 20 -16 X 10 )-~4 X 20 - 6 X' 1 ~ + 12( 4 X 10 - 8 X 6) 

=2(160-160)-c,(80-?6) + 12( 40-48) 

= 2x 0-6x (-16)+ 12x (-8) 

=+96-96 

=0 

are singular matrices. 

Note : the determinant of singular matrix have a single value equal to zero irrespective of 
its order. 

5.15.2 Non -Singular Matrix : If the value of the determinant of a square matrix, is not 
equal to zero it is called a non-singular matrix. 
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If A is a square matrix and if del A or IA~ is not equal to zero it is called non-singular 
matrix. 

Example : A = [ ~ : ] is a non-singular matrix. 

asdetA=IAI=~ ~=6x8-4x2 

= 48 - 8 = 40 ;t: 0 

Note : the determinant of non-singular matrix can have any value other than zero. 

5.16 MINORS AND COFACTORS 

5.16.1 Minor of an element of a determinant : 

Consider the square matrix A= [aii ],,.xn · then its determinant IA!= laiil 

all 0 12 0 1n 

Now A= 
az, a22 a2n 

(1) 

0 n1 0 nz ... amn 

The ( ~ j)th element is aii. If we supress the elements of first row and first column, in 

the above determinant then we get a determinant det B, ( A1) whose order is less 

thanone that of the determinant A. IflAI is of order n, then the order of the determinant 

B (A1) will be (n-1). 

This determinant A1 is defined as the minor of the element a11 . 

Definition 16.1 : Thus minor of an element is defined as the determinant obtained by 
deleting the e)ements of the corresponding row and column in which the element lies. 
The minor of element a ii can be obtained by c!c?leting the elements of the /h row and 

/" column. The minor of the element,· as of a determinant is denoted by M;;. 
. . 

5.16.2 COFACTOR OF AN ELEMENT OF A DETERMINANT 

The cofactor of an element is defined as the product of (-li+ j and its minor. If My 

be the minor of aij, then its cofactor Clj is given by :. 



C ij = ( -1 i+ 1 M iJ i, and j represent the corresponding row and column inwhich 

element lies. 

Note: if i + j =even number the cofactor of the element is same as its minor. If i+ j =odd, 

then( cij )is negative for corresponding minor. 

Example : Find all minors and cofactor of the determinant. 

a b ~ IAI = 6 = l m 

p q r . 

m n 
Solution : Minor of a = M ij = q r 

Cofactor of a = c11 = (- 1) 1+1 m ~ = mq rn 
q 

Here M 11 and C 11 means minor and cofactor of the element of first row and first 
column respectively. 

l m 
and C12 = (-1)1+2 l 

m ;4: m 
Minor of h=M12 = 

p r p r r 

I m 
C13 =(-1)1+3 

I m l m 
Minor of c=M13 = and = 

p q p q p q 

b ~. b rl=4! rl Minor of l =M21 = and C21 =(- 1)2+1 

q q 

a ~. and C22 =(- 1)2+2 
a 

~; 

(l 

~ Minorofm =M22 = 
p p p 

a ~. C23 =(-1)2+3 
a ~;4: ~ Minor of n = M 23 = and 

p p 

b ~. C31 =(-1)3+t 
b 

~; 

b 

~ Minor of p = M 31 = aqd 
m m m 

a C and C32 =(-1)3+2 a 
C ;4; C 

Minor of q=M32 = 
1 m I m m 

a b a b a b 
Minorofr=M33 = 

1 
and C33 =(-1)3+3 = ' l m . I m m 

Now, it is easy to define the value of the determinant IAI = iaiii of order n, by 
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l1J. 

n 

IAI=~= L(-li+i aii M!J 
0=1 

Wben M !I and C ii respectively denote the minors and cofactors of the elements aij 

In the expression ( 1) the summation j = 1, ... n. shows that the determinant has been 
expanded along ifri row. 

If the determinant is expanded along/h column, its value will be given by ; 
i+ j 

IAl=~=~I(-1) aijMij 
0=1 

n 

=Ii+J aijcij 
i=I 

The value of the determinant ts not affected by expanding it along any row or column, 
this can be verified by the following example. 

5.i7 EXPANSION OF A DETERMINANTS 

Let us consider a det_erminant of order 3 of a square matrix -

[a" a12 013] 
A =[aijLx3 = a21 a22 a23 

a31 D32 a33 

all a12 a13 
det A=IAI= a21 a22 a23 

a31 a32 a33 

Now, to expand the above determinant we assign the sign to each element. The first 
element a11 is assigned the + sign and a12 assigned - sign. a13 is assigned + sign and 
so on. This assignment is made for the element of the column too. 

+ + 
au a12 a13 

Thus we have del A = IAI = ~ = a21 a~ a23 

In the expression of the above determinant along any row ( or column, the element of 
the row ( or column) are written with ilie assigned sign and then multiplied by their 
corresponding minors. The expansion along first row, of the above determinant is 
given b~low : 



the expr~ion is done by deleting the row and columns in which the element belongs. 

No~ : A determinant can be expressed along any row or column but the sign of the elements 
must be according the following rule. 

+ - + 
- + 

- + 

Eumpl• : Let A = ; ! j 
p q ~ 

Now expanding the above determinant 

(i) Along first row -

11 = a m ~ _ JI nj + JI m 
q r I IP ~ IP q 

= a(mr-nq)-b(lr-np )+ <,{lq-mp) 

= amr - anq - blr - bnp + clq- cmp 

(ii) Along first column 

= a(mr-nq) -/(br-cq)+ Ji..bn-cm) 

= amr- anq - lbr - lcq) + pbn - pcm 

(iii) Along third column 

11 = JI ml_ n a ~ + Ja b 
"Ip ~ P qi ' 11 m 

= c(lq-mp)-n(_aq-bp)+ ,(_am-bl) 

= c/q - cmp -naq-nbp+ ram-rb/ 

Clearly the expression for 11 in (i), (ii) and (iii) are same. 

5.18 ELEMENTARY PROPERTIES OF DETERMINANTS 

The expansion of determinants can be done by vecy easily by using the following 
properties. These properties can be applied for determinants of any order. However, 
we, shall describe the properties for the determinants of order 2 and 3. 
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Property 1: If every element of a row (or column) is zero, then the value of 
determinant is also zero. 

Example: 

=0 

Expanding along second row. 

Property 2: If the rows and columns of a determinant are exchanged the value of the 
determinant remains same. 

Example: 

: dl=ad-bc, and : ~=ad-be 

a b 

Similarly, d e 

p · q 
~ =(er-qf)-Ji.dr- pf)+ «dq-ep) 

and 

a d 

C f 

b e ~,; a(er- Jq)-d(br-cq)+ p(bf -ce) 

:;: a(er-qf)-fi...dr- pf)+ c:(dq-ep) 

from above : ! ;I=: : ~ 
p q ~ C f ;1 

Property 3 : If any two adjacent row ( or columns) of a determinant are interchanged 
the sign of the determinant is changed. 

Example: 

C 

C 

b 
=ad-be, 

d 

C 

a 
~=be-ad 



, 

Similarly for, 

a b 

d e 

p q 
~=<(er~ qf)- IJ..dr - pf)+ cf.dq-ep) 

and : ! ld(br-qc)-t(ar-cp)+ f(aq-bp) 

=-[a(er-qf)-~dr- pf) + c(dq-ep) 

=t: ~ 
; : l~; : ~ 

Note : If the rows ( or columns) are exchanged odd times the sign of the determinant is 
changed but if they are exchanged even times the sign of the determinant does not 
change. 

Property 4 : If any two rows ( or two columns) of a detenninants are identical, the 
value of determinant becomes zero. 

a b ~ A = a b c , then first and second rows are identical. 
p q . 

For 

Interchanging first and second row and using property 3. 

A=l : l-A 
:. A+ A= 0 ⇒ 2A = 0 ⇒ A= 0 

or 2A = 0 or A = 0 

Note: The value of the determinant used above will also be zero, if.we expand it 

A= a(br-qc)-~ar-cp)+ c(aq-bp) 

A= abr-aqc-bar+ bcp)+ caq-cbp =0 

Property 5: If anyrow(orcolumn)ofadeterminant is multiplied by any non-zero 
number then the value of the determinant gets multiplied by the number. 
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Let us multiply first row by k, then 

ka kb 1 d e f = ka(er-qf)-/di...dr- pf)+ kd.._dq-ep) 

p q r 

== k[(er - qf)-b(dr - pf)+ c(_dq-ep)] 

a b 1 =kd e f =k!i 

p q 

Similarly = ~ : '=kl; ! tk/LI 
p q ~,, p q ~, 

Note : Property 5 is of great importance. It is clear that if any row ( or column) has common 
factor, then it can be taken out of the detenninant. 

Conversely, ifwe multiply any row (or column) of a detenninant, by a constant then 
we divide the entire determinant by the same constant to keep the same value of the 

determinant. 

a 

:.d 

p 

b 

e 

q ~ ka kb 1 f=~d e f 
p . q r 

Property 6: If each elem~t of a row ( or column) of a determinant is the sum of two 
quantities then the determinant can be written as the sum of two determinant of 

the same order. 

a+ I b 

For d+ m e 

p+n q 

~=(a+ [)(er-qf)-(b+ mX br-cq) + (p + n)(bf -ec) 

(On -expanding along first column) 

= a{er-qf)+ d(br-cq) + Ji.bf -ec) + l(er--qf) -- ·r1(br-c•1)-r n{bf - ec) 

=~: f:: ~ 
Similarly we can show that 



a+k1 b+ /1 l f ~ 
a b+ /1 k1 b+ /1 

d+k2 e+ /2 d e+ /2 k2 e+ /2 

p+k3 q+ /3 p q+ l3 k3 q+ 13 

a b ~ a 11 ~ k, :f k1 11 ~ = d e f + d /2 + k2 k2 /2 

p q p £3 k3 q r k3 /3 rl 
Property 7 : If each element of any row ( or column) is added with the multiple of 

corresponding element of another row ( or column) the value of the 
determinant is unchanged. 

For let 
a b ~ a+kp b+klj c+1 

A = d e f and A 1 = d e f 

p q p q r 

here A1 is the determinant obtained by A where k times of each element of the third 
row is added tQ the corresponding elements of the first row. 

Now, &1 = ~ : ~ + k ~ : ~ ~y ~filfy 5 md 6) 

= ~ : ~ + k.O (by property of 4) as two rows are identical. 

:. A= A1 

Property8: The sum of the productoftheelementofanyrow (orcolurnn)with the 
cofactor of the corresponding elements of another row ( or column) is 

zero. 

For A=; ! cJ 
p q ~I 

Let the cofactors of elements of first row be A1,A2 and A3 are multiplied by the 
elements then of the second row and added, we get 

dA1 +eA, + fA, =4: 1+~~: /~}+ ~: •J 
= d(er-qf)-e(dr- pf)+ f(dq-ep) 

= der-dqf -edr-epf + fdq- fep 

=O 

Property 9 : If the determinant contains a variable x, and the element are polynomials 
in x such that putting x = a, the value of detenninant becomes zero, then 

(x-a) is a factor of the determinant. 
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Since the element of the determinant are polynomials inx, therefore the expansion of 
thedeterminant will also be a: polynomial in x. As the value of determinant becomes 
zero by putting x = a, then (x - a) is a factor of the polynomial after expansion. Thus 

(x - a) is a factor of the determinant. 

for 

} X x2 

let /:J. = 1 y y 2 

1 z z2 

In second row if we write y = x, then the first and second rows become identical 
consequently the value of the determinant becomes zero. Therefore, (x - y) is a factor 
of the determinant. 

Similarly putting y = z and z = x, the value of determinant becomes zero in each case. 
So (y - z) and (z- y) are also the factors of the determinant. 

:. !:J.=l(x-y)(y- z)(z-x) ... (1) 

where A is a constants the value of which is to be determined It is clear that each term 
of the determinant after expansion is of degree three and each term of the product -in 
right side is also of degree three in x, y, z. 

We observe that yz2 is a term in the expansion, its coefficient is 1, and the coefficient 

of yz2 in the RHS of (I) is A . 

. ·. comparing the coefficients of corresponding terms on both sides of equation (1 ), 
we get A= 1 

:.!:J. = (x- y)(y- z)(z-x) 

5.18.1 Working RuJe for Finding values of Determinants : 

To evaluate a determinant we apply the properties of the determinants and try to bring 
maximum number of zeros in any row ( or column) and then the determinant is 
xpanded along the elements of the same row ( or column). 

Note : First, second, third ... rows are denoted by R1, R2, and R3 where as first, second, third 
columns are denoted by C1, C2, C3 .... 

SOLVED EXAMPLES 

Example 1 : Evaluate the following : 

(i) 
~ -1 

13 4 

1 -1) 
(ii) -a ~ 



Solution : (i) ~ -1 
A=~ 

4 
=2x4-(3)(-1) = 8+3=11 

(ii) 
1 -1 

A= = 1 x b-(-1)(- a) = b-a 
-a b 

(iii) 4 12 22 = 12+22 

~

1 11 1~ ~1+10 
12 22 
11 lOJ 

1 25 3 5+ 36 25 3 

11 lOJ ~O 11 10~ 12 22 + 2 12 22 

25 3 6 25 3 

= 0 + 0 ( two columns in each determinants are identical) 

=O 

Alternatively : 

~

1 11 1~ ~1-11 11 10~ 
A= 4 12 22 = 34-12· 12 22 C1 -C2 ➔ C3 

1 25 3 1 - 25 25 3 

=~~ :~ ~~1=0 
~6 25 3~ 

(C1 = C3 ) (first and third column are identical) 

Example 2: _ 

Prove that ~ ; ~ = abc + 2.lgh-af 2 - bg
2 

-ch
2 

Solution : Expanding the determinant along the first row (R1) 

LHS=~ ; l1; ~-( ~+\ ~ 
=t,(bc - / 2 )-h(hc-gf)+g(hf-bg) 

= abc- af 2 - h2 c - ghf + ghf - bg2 

= abc + 2/gh - af 2 - bg2 
- ch2 

=RHS 
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Example3: If a, b, c are all different and; 

a a2 l+a3 

b b2 1 +b3 =0 show that 1 +abc=O 

C c2 I+ c3 

a a2 1 +a3 a a2 1 a a2 a3 

Solution: b b2 l+b3 =b b2 l+b b2 b3 

C c2 1 + c3 
C c2 1 C c2 c3 

a-b a2 -b2 0 1 a a2 

= b-c b2 -c2 +ab 1 b b2 

C c2 1· 1 C c2 

Applying R1 - R2 ➔ R3, R2 - R3 ➔ R2 in both the determinant and raking a, b 
and c common from first row, second row and third row respectively in second 
detenninant. 

a-b a2 -b2 0 a-b a2 -b2 

= b-c b2 -c2 +ab b-c b2 -c2 

C c2 1 1 C c2 

1 a+b ~ + abc(a-b)(b-c)~ 

1 

•+1 =(a-b)(b-c)I b+c 1 b+c 

C c2 C c2 

= (a-b)(b-c)(c-a) + ahd._a-b)(b-c)(c-a) 

Expanding first determinant along third column and second detenninant along first 
column. 

Now, (a-b)(b-c)(c-a)(I + abc) = 0 

But a, b, c are all different that is a * b * c (given) 

Example4: 

1 X yz 

Prove that 1 y zx = (x-y)(y-z)(z-x) 

1 z xy 

I X yz 

Solution : !!. = 1 y zx 

1 z xy 

:.l+abc=O 



ri 
x - y z(y - x1 

= y-z x(z- y 

z xy 

-(x-y)(y-z)~ : =j 
1t z ;1 

Ii = (x - y)(y-z)(l(-x + z) 

Ii= (x- y)(y-z)(z-x) 

Example 5 : Evaluate 

~

-y y-z 

y-z z-x 

-x x-y 

z-~ x-y 

y-

Solution: 

ry y-z z-x 

Let li=y-z z-x x-y 

-x x - y y-z 

~-~ 
y-z 

z- ~ z-x x - y =0 

x-y y-

Example 6 : Evaluate 

} X 

1 y 

1 z 

Solution: 

1 

Ii= 1 

l 

X 

y 

z 

y+~ z+x 

x+ 

y+~ z+x 

x+y 

x-y 

(Expanding along CJ 

by property of determinant 

Applying R1 - R2 ➔ R3, R2 - R3 ➔ R2 

0 1 -1 0 

Ii= 0 
1 

y-z z-y =(x - y)(y-z) y-~ 0 1 -1 

z x+ y 

Expanding along C1 

li=(x-y)(y-z) lx(-1+1) 

( )( ) 0 

1 z x+y 
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Example 7 : Prove that 

Solution: 

z 

y 2 
z

2 =xyz(x-y)(y-z)(z-x) 

y3 z3 

Let a + ~: :: (taking x, y, z common from firs~ second 

and third columns respectively) 

1 

=xyz x 

x2 

y 

y2 

z 

z2 

0 

y-x 

y2 -x2 

y-x z-x 

0 

z-x 

z2 -x2 

=xyzy2 -x2 z2-x2 

Applying 

= x y z{(y-x)(z2 -x2)-(z-x)(y2 -x2
)} 

= x y z{(y-x)(z-x){z+ x -(y + x)}} 

=xyz(x-y)(y-z)(z-x) 

Example 8 : Without expanding Prove that 



Solution: · 

Further ~)~ : 

~ q 

Example 9 : ~ove that 

l 

(Interchanging C 1 and C 2 ) 

( Interchanging R1 and R2) 

(Interchanging R1 and R2) 

(Again Interchanging R2 and R3) 

z =(y-z)(z-x)(x.-y)(x+ y+z) 

z 2 

Solution: 
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Let . 

0 0 l 

A=l X x-y x-z 

_ fx-y) .x-z 
A-I 3 3 3 3 

X - y X - z 

~x- y) 

-l(x - y)(x2 +xy+ y2) 

1 
= 

Expanding along C1 

x-z I 
(x-z)(x2 +xz+ z2i 

(x-z)() +xz+ ,,J 
(Taking (x-y) and (x-z) common from C, and C2 respectively). 

=(x- y)(x-z){(tz + zx+ z2 -tz -xy- y2} 

=(x- y)(x-z)(x(z- y)+(z-y)(z - y)) 

=(x- y)(x-z)(z-x)(x+ y+ z) 

=(x- y)(y-z)(z-x)(x+ y+ z) 

Example 10 : Prove that 

Solution: 

Let 

x+y 

y+z 

z+x 

~+y A = y+z 

+x 

y 

z 

X 

ry+z 
=y+z+x 

+x+y 

A=(x+ y+ z~: 

j 
y z 

z X Taking(x + y+ z)common fromC1 

X y 

y 

1 z 

X 



y z 

z- y x-z, 

x- y y-z 

tz- y x-z • 
=(x+ y+ z 

-y y-z 

Expanding along C1 

=(x+ y+z)[{(z-y)(y-z)-(x - y)(x-z)}] 

=(x+ y+z){zy-z2 - y 2 + yt - x 2 +xz+ yx-yt} 

=(x + y + z){xy + yz+ zr-x2 
- y 2 -z2

} 

=-(x+ y+ z)(x2 + y 2 +z2 -xy- yz-zr) 

= - (x3 + y 3 
"t- z3 -3.xyz) 

3 3 3 3 = xyz-x -y -z Proved. 

Example 11 : Find the value(s) of x if; 

3 +x 5 2 

1 7+x 6 =0 

2 5 3+x 

Solution : Given equation 

nx 5 2 

1+x 6 =0 

5 3+x
1 

l+x D - 1-x 

1 1+x . 6 =0 

2 5 3+x 

l+x 0 0 

1 1+x 7 =0 

2 5 5+x 

= (1 + x)[(7 + x)(5 + x)-35] = 0 Expanding along R1 

=(l+x)[~S+12x+x2 -~5]=0 

=x(x + l)(x + 12) =0 

X = 0, X = -1, · X = -12 
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Example 12 : Prove that 

Q.t. 

r+ :+2z X 

y+z+2x 

X 

; j=2(x+ y+z)
3 

z+x+2 

So1ution: 

Let r
+ y+2z X 

A= z y+z+2x 

Z X 

X y 

~

x+ y+z) 

A= x+y+z) 

x+ y+ z) 

y+z+2x·2y y 

x z+x+2x•2y 

1 X 

Taking2(x + y +.?')common from C1 

y 

A=2(x+y+z) 1 y+z+2x·2y y 

1 x z+x+2x•2y 

1 X y 

= 2(x + y + Z) 0 y + Z + X 0 
0 0 x+y+z 

x+y+z 
=2(x+y+z) 

0 

=2(x + y + z)(x + y+ z)2 

=2(x+ y+ z)3 

0 

x + y+z 

EXERCISE 1.2 

Expanding along C1 

y+z)2 x2 x2 

y2 (z+x)2 y2 =2xyz(x+ y+z)3 

z2 z2 (x + y)2 



r~:-2 2x 2x Matrices and 
Determinants 

Q. 2. y-z - x 2y =(x+ y+ z)3 

2z 2z z-x-y 

X y+z xi 

Q. 3. y z+x y2 =(x+ y+ z)(x-y)(y-z)(z-x) 

z x+ y z2 

1 I 

:J=ah Q. 4. 1 l+a 

I I l+ 

X y z 

Q. 5. xi y2 z2 =(x-y)(y-z)(z-x)(xy+ yz+a) 

yz a xy 

w 

Q. 6. w w2 1 = 0 Where w is one of the imaginary cube roots of unity. 

w2 I w 

~ 
x+ y 

x+ y+z ~ 
Q. 7. 3x+2y 4x + 4 y + 2z = x 3 

6x+3y l~x+6y+3 

I 1 

Q. 8. X y z =0 

xi -yz y2 -.zx z2-xy 

-xi xy .zx 

Q. 9. xy -y2 yz = 4.x2 y2z2 

xz yz -z2 

l+x I 

: J=xy+ ~+z<+xyz Q.10. I I+ y 

I 1 l+ 

Q. 11. Prove that 

X y I 

Xi Y1 1 = 0 
X 2 y 2 Se{f=/llllalctio,ulf Mqlgigl 
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Represents the equation ofa line which passes through the points (x 1, y 1) and (x2 , y 2) . 

Xi 
1 

Q. 12. Prove that - x2 2 
X3 

1 

y2 1 =0 

Represents the area of a triangle whose vertices are (x1, y1), (x2,y2) and (x3, y3). 

Q. 13. Find the area of a triangle whose vertices are (2, + 4), ( +2, 6) and (5, 4). 

5.19 APPLICAT!ON OF DETERMINANTS 

5.19.1 Solution of System of Linear Equations by Deterninants: (CRAMER'S RULE) 

Consider the system -

a1x+b1y=c1 

a2x + h2Y = c2 

On solving the above equation we get, 

b2c1 -b1c2 a1c2 -a2c1 
X=--- y= - - -, 

a1b2 - a2b1 ' a1b2 -a2b1 

The values of x and y can be given in terms of the determinants. Thus we have, 

Cl b1 Ct Ct 

C2 b2 
X= 

' y= 
al b1 

C2 C2 

al br 

a2 b2 a2 b2 

Here we see that a1 bi is the determinant of the coefficients of the variables as 
a2 b2 

Ci bi is the determinant obtained by replacing the coefficients of x in two equations 
C2 b2 

by corresponding constants, and a1 
Ci is the determinant obtained by rep]acing the 

C2 C2 

coefficients of y in two equation by constants in the equations. 

Now consider the following system of linear equations in three variables x, y, z . 

a1x + b1y + c1z = d1 

a2x+b2y+c2z=d2 

a3x + b3y + c3z = d3 

... (1) 

... (2) 

(3) 



Now, 

d1 bi C1 a1x + b1y + c1z b1 C1 

dz b2 Cz =· a2x + b2 y + c2z b 2 Cz 

id 3 b3 C3 a3x+b3 y+c3z b3 C3 

Putting the value of d1 ,d2 and d3 from equation (1), (2) and (3) 

bi C1 b1Y 

b2 C2 + b2Y 
,_J, j C3 b3y 

b1 Ci C1Z 

b2 c2 + ciz 

b 3 C3 C3Z 

1111 b1 C1 b1 b1 Ct C1 b1 C1 

= x ai bi ci + y bi bi ci + z ci bi ci 

a3 b3 C3 b3 b3 C3 C3 b3 C3 

a b1 c 1 1 (Determinants in2nd and 3rd terms vanish 
=xai bi Ci +y.O+zn 

as they have identical columns) 
a3 b3 C3 

d1 bi 

di bi 

ci =x ai bi ci 

C3 a3 b3 C3 

Cl 

Ci 

C3 

al di C1 al 

ai di Ci ai 

a3 d3 
or x = 

d3 b3 

bi 
, Similarly y = C3 

b1 
and z= 

a3 

al C1 a1 C1 al 

ai bi Ci ai bi Ci ai 

a3 b3 C3 a3 b3 C3 a 3 

al bi Cl (Determinant of the coefficients of the 
Let D= ai bi Ci 'I'- 0 var iables in the three equations.) 

a3 b3 C3 

d1 b1 
c, f 

al d1 Cl al bi 

D = dz b2 C2 D = ai dz Ci and D = az b2 X y z 

d3 b3 C3 a3 d3 C3 a3 b3 

Dx D D 
Then x=-, y= ;. and z= - z If(D-1:-0) 

D D 

bi 

bi 

b3 

bi 

bi 

b3 

di 

d 2 

d3 

d1 

dz 

d3 

CJ 

Ci 

C3 

In determinants Dx, DY' Dz the column of coefficient of variables x, y and z are 
replaced by the constants respectively. 
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The solution of system of linear equation discussed above can be used to solve a 
system of n equations in n unknowns as follows -

Consider the following system of n linear equations in n unknowns. 

a11X1 + a12X2 ... a1nXn = Cl 

a21X1 + a22X2 ... a211X11 = C2 

au a12 ... aln 

a21 a22 • •• a211 

Let D= .... . ......... ;t-0 

(A) 

C1 

Let D ~ be to determinant obtained by D after replacing first column by c2 

en 

D:ri Di,, DZi Dx.. 
Then X1 = D, Similarly Xz = n' X3 = D .. ., xii = [) 

The solution of n linear equations in n- unknowns given above is known as Cramer's 
Rule after the Swiss Mathematician Gabrie] Cram.er (1704-1752). 

SOLVED EXAMPLES 

Example 13 : Apply Cramer's Rule to solve the following system of linear equation. 

2x+y =6 

3x-2y =9 

Solution : Here D = ~ _ ~• 

Now, 
Dy 

y=­
D 



(-12-9) 
x=--...;. 

-4-3 ' 
(18-18) 

y= -4-3 

-21 0 
x= - y=-

-1' -7 

x=3 y=0 

Example 14 : Apply Cramer's rule to solve the following system of equations. 

x+y+z=4 

h - y+2z=5 

x-2y-z=-3 

Solution: 

D=~ 

1 ~ = 1(1 + 4)-1(-2 + 2)+ 1(-4+ 1) 
Here -1 

-1 
==5+4-3=6:;t0 

4 I 1 

D = 5 -1 2 
= 4(1 + 4)-1(-5 + 6)+ 1(-10-3) 

:i =20-1-13 =6 
-3 -2 -1 

D, =ri 
4 ~ = 1(-5 +6)-4(-2 - 2)+ 1(---j)-5) 
5 

-3 
=1+16-11=6 -

D, =fi 
1 4 

= 1(3 + 10)-1(-6 - 5) + 4( -4 + 1) 
-1 5 

-2 -3 
= 13 + 11-12 = 12 

D 6 
:. X = _.!. = - = I 

D 6 
D 6 

y=2=-=1 
D 6 

_ D 1 _ 12 _
2 z-----

D 6 

x=L y=L z=2 

Not,e: (I) In the system ofn equations inn unknowns given by (A); if c1= ci=· .. c11= 0, 

theneachD;r; ,D.i:i ,D~ , ... ,Dm = 0and if D :;t 0,the systemhas only the trivial 
solution x1 =Xi= ... x11 = 0 

(ii) Cramer's rule is not applicable if D = 0. 

(ill) If D = 0 and either D x :;t 0, ( or any other Dx; ~ 0) the system has no solution. 

(iv) IfD = 0, and D ;r; = D ~ = ... D x. = 0, the system has infinite number of solutions. 

For consider the s stem of eq ations 
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Here, 

x+y=1 

2x+2y =14. 

... (1) 

. .. (2) 

Djl lj=O 2-2=0 D = 
1 

I = 14-14=0and D JI 
1

7
1=14 - 14=0 

~ ~ I , X 14 2 y ~ ~ 

Thus we see that D = 0, D x = DY = 0 

Now putting x = k in equation (1 ), k is arbitrary and can take any value. 

y=1-k 

thus the system has solutions and it has infinite number of solution. 

If we draw the graph of these two equations we get coincident lines, and as such 
there are infinite number of points where these lines meet, the system has infinite 
number of solutions. 

Example 15 : Solve the following system of equations : 

x-y+3z=6 

x-3y +3z =-4 

5x - 3 y + ~ z = 10 

Here, 

D=~ 

-1 3 

=3 ~ 
-1 1 

3 -3 3 -1 

3 ~ 3 1 

1 0 

~ =31 4 ApplyingC1 +C2 ➔ C3, C3 +C1 ➔ C3 

5 8 

= 0 (as second and third columns are scalar multiple of each other) 

6 -1 3 

D = X -4 3 -3 =3 

10 3 3 

6 - 1 1 2 2 

~ = -4 3 -1 =l 6 6 Applying R1 + R2 ➔ R1, R2 + R3 ➔ R2 

10 3 1 10 3 

=3~ ~=0 



Similarly it can be shown that DY = D 1 = 0 

Now consider the first two equations, 

x-y+3z=6 

x - 3 y + 3z = -4 these equations can be written as 

x-y=6-3z 

x + 3 y = 3z -4 Treating z as constant we have, 

Here, 

Or, 

And, 

1 -31.f D= 
1 ~

-3z -1 
D = 

X z-4 3 > 

j6-3z -1 

Dx ~z-4 3 
X = - = '---:"-----,-....;. 

D I -1 

1 3 

18-9z-4 14-6z 7-3z 
x=---=--=--

3 +l 4 2 

1 6-3~ D = 
Y I 3z-

. 1 6-3zl 

Dy 1 3z-~ 3z-4-6+3z 
y=n= 1 -1 = 3+1 

1 3 

6z-10 3z-5 
=--=--

4 2 

Since we have taken z as constant we can give it arbitrary values and accordingly we . 
can get the corresponding value ofx and y. Thus we have infinite number of solutions 
which satisfy the first two equations. These are also satisfying the third equation. 

EXERCISE 1.3 

Using determinants (Cramer's Rule) solve the following system of equations. 

Q. 1. 

(iv) 

x+14y=-4 
8x+12y =-6 . 

2x-3y-z=0 

x+3y-2z =0 

X 3y 0 

(ii) x+3y+z=8 (iii) x+y=-5 

4.t + y = 1 X + Z = -6 
x-3y-3z=-2 x+ y-2z=3 

(v) 2x+5y-z =9 (vi) 3x+ y+2z=3 

3x-3y+2z = 7 2x+3y-z=-3 

2x 4y+3z 1 x+2y+z 4 
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5.20 ADJOINT OF A SQUARE MATRIX 

Consider 

A = [ag lnXII 

au a12 

a21 au 
Then A= 

an1 an2 

Let the cofactor of the element aij be Aii then the cofactor matrix can be written as -

A11 A12 A1n 

[Aii] = 
A21 Au A2n 

Anl An2 AM 

Taking the transpose of [Aij] =[Aid 

A11 Au Anl 

A12 Au An2 
Thus [Aft]= A13 

A1n A211 AM 

The transpose of cofactor matrix of the elements of the matrix A, is called adjoint of A 
and is written as adj A 

Let A=[::: :: :~] 
a31 032 033 

If A ii denote the cofactor of the element oiJ, then the cofactor matrix of A is given by : 

[

Au A12 A13] 
Cofactor matrix of A = A21 Au A23 

A31 A32 A33 

5.21 INVERSE OF A MATRIX 

For every non-singular Matrix A, there exists a matrix B of the same order as that of A. 
such that AB = BA = I where/ is the identity matrix of the same order as of A. 



The inverse of matrix A is denoted by A-1
• 

If A is a square matrix [ayJ and JAJ * 0 i.e. the matrix A is non-singular then 

A- 1 d"A l 
=a fJ x JAJ 

Example 16 : If A = [~ ~ 
0 - 6 

Solution: 

0 

4 

SOLVED EXAMPLE 

-1] 5 find A', adj A and A- 1 

-2 

then A'= 0 4 -6 A=[i 
-6 

~!] 
-2 

[ I 3 0] 
-1 5 -2 

Now, IAI=~ 
0 

~J 4 

-6 

=~ 

0 

~J 4 Applying C1 + C3 ➔ C3 

-6 

= 1( - 8 + 48) = 40 * 0 Expanding along first row. 

:. A is invertiole. 

Now, 

A 31 = 4 Au = -8 + 30 = 22, 

A12 = -{- 6 - 0) = 6, 

A21 = -{ +6) = - 6, 

A22 =-2 =-2, A32 = -{5 + 3) = -8 

A13 = - 18-0 = - 18, A23 = -{-6) =6, A33 = 4 

[

22 

:. Adj A= 6 

-18 

11 

20 
3 

20 
9 

20 

~ ~] :.['=~Ax[~]= ![I 
3 1 -

20 10 
l 1 

20 5 
3 l 

20 10 

-6 4] 
-2 -8 

6 4 
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[ 

4 -6 

Q. 1. Show that A= -1 -1 

-4 11 

EXERCISE 1.4 

: } is invertible. Find A',adj A and A-1
• 

-1 

Q.5.FindA',adjA,andA-1,ifA= -4 -1 0 [ 
2 1 3] 
-7 2 1 

5.22 ELEMENT ARY OPERATIONS ON MATRICES 

Consider the matrices A = [
3 4 5 

], B = [
6 8 10

] here matrix B is obtained by 
6810 345 

interchanging first and second rows in the matrix A. 

Further C = [ l 
2 3

] and D = [ 
2 4 6 

] 
7 8 9 14 16 18 

Clearly, Matrix Dis obtained by mµltiplying each element of Matrix C by 2. 

Also E= F= [2 3 5} [2 3 5 l 
' 1 4 6 5 10 16 

Matrix Fis obtained by multiplying second row of Matrix Eby 2 and adding it to the 
second row. 

The above operations on rows of a matrix are called elementary row operations. 

Thus an elementary operation is either elementary row operations &r elementary 
column operations and is of three types. 

(i) Interchanging any two rows (or columns). 

(ii) Multiplication of the elements of any row (row column) by any non-zero number. 

(iii) Addition of a non-z.ero scalar multiple of any row ( or column) to another row 
(or column). 



5.22.1 Elementary Matrices : 

A matrix obtained by a single elementary operation from an identity matrix, is called 
elementary matrix. 

Let I' = l ~ r ~] On interchanging first and second rows, we get amalrix of the fOIIll 

A=[I 
1 ~l Multiplying finit row of / 3 by 3, we get another matrix 0 

0 

B=[~ 
0 ~l The matrices A and Bare elementary matrices. 1 

0 

5.22.2 Equivalent Matrices: Two matrices are said to be equivalent if one can be obtained 
from the other ty elementaf row transformations. 

If matrix B is obtained from matrix A by elementary row transformation, then we 
write A~ B. 

5.22.3 Inverse of a Matrix by Elementary Transformations : 

If a matrix A is reduced to identity Matrix I by elementary transformation, then 

PA= I, where P = P"P ~ 1 ••• ,P1P1, Matrices 

:. p = A-1 

To find the inverse of a matrix A, we write 

A ==IA 

Now we perform elementary operations on A in left side and same elementary 
operations on/ in right hand side so thatA is reduced to/ in left side ~di on right side 
reduce to P, getting I = PA then Pis inverse of A. 

5.23 ECHELON FORM OF A MA TRIX 

A matrix is said to be in Echelon form if its first element is one and the elements below 
the diagonal are all zeros. 

Examplet: 

(i) 
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are the examples of Matrices in Echelon form. 

Note: [' · .1 2 3] A ma~ c~ be reduced to Echelon form by elementary row 
O · · .1 7 operat:J.on on 1t. 

0 0 · · .3 The following steps are used to reduce a matrix in Echelon form. 

(i) First we reduce the element of first row and first column ie. ( 1, 1 )th element as unity 
i.e. 1 by suitable elementary row operations. 

(ii) We reduce all the elements below the element of first row and first column i.e. 1 to 
zero. 

(iii) We reduce the element of second row and second column i.e. (2, 2)th element as 
unity by suitable elementary row operation. 

(iv) We reduce all the element in the second column to zero, below the second row. 

In the similar manner we proceed and the matrix is reduced in Echelon form. 

SOLVED EXAMPLES 

Example 17: 

[2 J I:] to F.chelon form. Reduce A= 3 6 

2 4 

Solution: We have 

[2 J !:]-~ J 91 A= 3 6 6 12 Applying R2 - R1 ➔ Ri 

2 4 4 8 

-[i 
3 ~] -1 Applying R2 -(R1 + R3 ) ➔ R2 
4 

-[~ 
3 ~] -1 Applying ! R3 ➔ R3 

2 
2 

-[~ 
3 

!] 1 Applying -R2 ➔ R2 

2 

-[i 
3 

!] 1 Applying R2 -(R1 + R3) ➔ R2 
0 

Whi hi 1 Eh 1 f 



Example 18 : Reduce A ; [~ : ~ l in Echelon fonn. 

Solution : We have 

1 2 3 

~ 0 1 2 
1 1 

-1, 
2' 2 

1 2 3 

~ 0 1 2 
O 5 7 

2' 2 

-[~ r ;1 

-[~ ! !] 
Which is Echelon form of A. 

Example 19: 

Applying _ ! R2 2 

Applying ! R3 ➔ R3 
2 

Applying 2R3 ➔ R3 

Reduce A = [~ ~ ! ~] to Echelon form. 

3 1 2 4 
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Solution: We have 

[~ 
2 3 

l[~ 
2 3 

~l I 3 - 3 -3 Applying R2 - 2R1 ➔ R2 
I 2 1 2 

~[i 
2 · 3 

_:1 - 3 -3 Applying R3 -3R1 ➔ 3R1 

-5 -7 -8 

~[i 
2 3 

i1 1 I Applying _ _!_ R2 ➔ R2 

-8 . 
3 

- 5 -7 

~[i 
2 3 

~l 1 1 Applying R3 + 5R2 ➔ R3 
0 -2 

~[i 
2 3 

~l 1 I Applying _!_.R3 ➔ R3 
2 

0 -1 

~[i 
2 3 

}J 1 I Applying -R3 -➔ .r13 
0 1 

Eumple 20 : Find the inverse of[~ 

-6 

~] by elementary trans~on:,oj o~. -6 
-2 

Solution: 

[6 ~ 81 Let A= 4 -6 8 
0 -2 2 

We have, 

[~ 
-6 

;1-[i 
0 ~lA -6 1 

-2 0 
(": A = IA = Al) 

s.~lf:lnstr11cdonal Mlltulilt 
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1 -1 - - 0 0 
3 6 

Applying ! R1 ➔ R1 4 -6 8 = 0 1 0 A 

0 -2 2 0 0 1 
6 

1 -1 
4 1 

0 0 - -
3 6 

0 -2 
8 2 

1 0 A Applying R2 - 4R1 ➔ R2 = 
3 3 

0 --2 2 0 0 1 

1 -1 
4 1 

0 0 - -
3 6 

0 -1 
4 1 1 

0 A 
-R2 R3 -- = -- Applying - ➔ R2 and -➔ R3 

3 3 2 2 2 
0 -1 1 

0 0 
1 -
2 

1 1 
0 

[: -J]= 
- --

0 2 2 

1 
1 1 

0 A Applying R2 + R3 ➔ R3 -
3 2 

-1 
0 0 

1 
-
2 

o l 1 1 
0 - --

1 0 2 2 

0 1 
4 1 1 

0 A Applying R2 + R3 ➔ R3 -- = - --
3 3 2 

0 G 
1 1 1 1 -- - -
3 3 2 2 

1 1 
0 -

1 0 0 2 2 

0 1 0 
1 1 

-2 A Applying R2 - 4R3 ➔ R3 = - --
1 3 2 

0 0 3 
3 -1 - -4 

2 

1 1 
0 -

li 
0 

~]= 
2 2 
1 1 

-2 A Applying -3R3 ➔ R3 1 --
3 2 

0 9 4 
3 -

2 3 
S.eJf:l1H.trur;.liorI!!.l M.11!.~d.al 
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1 1 
0 

2 
1 

-2 
2 
9 4 
2 3 

Example 21: Find the inverse of 

II:· 433 334] l by elementary transformation. 

Solution: 

Let A=[~ ! !] 
1 3 4 

Now, 

[: 

3 

!]=[i 
0 ~l A 

4 1 

3 0 

[i 

3 !]{ 0 

~]A -1 - 1 

0 -1 I 0 -1 

[i 

3 !]{ 0 ~l A 
1 1 

0 1 -1 0 

[l 
0 +[; -3 

~] A 
10 1 

0 1 -1 0 

[i 

0 

~1=[; 
-3 

-3] 1 1 0 A 

0 1 -1 0 1 

A-'=[; 
-3 ~] 1 

- 1 0 

. -R2 ➔ R2 Applymg 
-R3 ➔ R3 



5.24 SOLUTION OF SYSTEM OF LINEAR EQUATIONS BY MATRIX METHOD. 

Con.sider the following system of linear equations. 

a1x+ b1y+ c1z = d1 

a2x+b2y+c2z=d2 

a3x+ b3y+ c3z = d3 

The above system of linear equation can be written in Matrix form as : 

[
al b1 Ct] [X] [d1 ] 
a2 . b2 c2 y = d2 

a3 b3 c3 z d3 

.. . (1) 

Now multiplying (I) by A-1 we get 

Now comparing the corresponding element on matrices on either side , we get the 
value of x, y and z. 

Example 22 : Solve the following system of linear equations by matrix method. 

2x+y+z=1 

x-2y-3z=1 

3x+2y+4z=5 

Solution : The above system of linear equations can be written as, 
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Coefficient Matrix A=[~ 
1 _;] -2 
2 4 

Variables Matrix X=[:] 
C.:mstant Matrix B=m 

.. . (1) 

Hence 

Now, 

1 1] 
- 2 -3 

2 4 

IAI =2 -1 -2 - 3 1 - ~ + l 31 -~ 
2 4 . 3 

= 2( - 8 + 6)-1( 4 + 9) + 1(2 + 6) 

= -4 -13 + 8 = -9 ;c 0 

·: IA/ ;c 0 

: . A is invertible matrix. 

Now cofactors er. thr. element of jAj are given by, 

Au =-~ -! =-8+6 = -2, A21 ={ ~=-{4-2)=-2 

A12 = { -: =-{4+9) =-13, 

A13 =~ -~=2+6=8, 

1 1 
A 31 = =-3+2=-1 

-2 -3 ' 

A33 =ii -~=-4 - 1=-5 

1 
=-(4-3)=-1 

2 



Multiplying equation (1) by A- 1 

Ir - < -2 -1][2 1 

-!] [:] = -i[-~: 
--2 

j [i] - -l - 13 5 7 I -2 5 
9 l s - 1 -5 3 2 -1 

' 2 2 I 2 2 1 
+ - + - - + - +- -

9 9 9 

[~ 
1 

-!] [:]= 
9 9 9 

rn 
13 5 7 

-2 
13 5 7 

- - - - -- --
9 9 9 9 9 9 
8 1 5 2 8 1 5 

- - - -
9 9 9 9 9 9 

4 2 3 2 4 2 2 6 4 - + - + - - -- + - - - - +-
9 9. 9 9 9 9 9 9 9 

[:] 
26 5 21 13 10 14 13 15 28 - -9, - +- -9' - +-
9 9 9 9 9 9 9 
16 1 15 8 2 10 8 3 20 -- +- +- -- -- +- -- +-
9 9 9 9 9 9 9 9 9 

2 2 5 
- +- -
9 9 9 

13 5 35 
= - -- --

9 9 '.) 
8 1 25 -- +- +-
9 9 9 

[i 
0 

~][:J = HJ 1 

0 

[:J -HJ 
Comparing the corresponding elements of a_bove matrices, we get 

X = 1, y = -3, Z = 2 

Note : If IAI -:;:. 0 the solution of system can be written as X = A-1 B 

Matrices and 
Determinants 

Se/1-lnstcwiomd Mafm!ll 

ill 



Business Mathematics 

Sdf:Instn,ct/oNd MqtqW 

J.Jll. 

Thus in the above example we have, X = A- 1B 

2 2 5 2 2 5 
- - - - +- +-

[~] = 

9 9 9 

[i]= 
9 9 9 

13 -5 -7 13 5 35 - - --
9 9 9 9 9 9 

-8 1 25 -8 1 25 
- - - +- +-

9 9 9 9 9 9 

Consequently X = 1, y = -3, Z = 2 

Example 23 : Solve the following system of linear equations : 

2x-3y+3z=l 

2x - 3y+3z =2 

3x + 2y + 2z =:: 3 

Solution : The above system of equations can be written as : 

[~ 
-3 !l [:] = m 2 .. . (I) 

-2 

[2 -3 
~] • IAI =~ 

-3 3 =2(4 + 6)+ 3(4-9) + 13(-4-6) 
Let :.A= 2 2 2 3 =20-15-30 

3 -2 -2° 2 =-25~0 

:. A is invertible. 

Cofactors of elements of JAi are 

A11 =(4+6)=10, A12 =-(4-9)=5, A13 =(-4-6)=-10, 

A21 =-(-6+6)=0, A22 =(4-9)=-5, .A23 =-(-4+9)=-5 

A31 =(-9-6)= - 15, A32 =-(6-6)=0, A33 =(4+6)=10 

Adj. A=[ l~ -~ -l~] :. A-1 J~I Adj A= -;5 [ l~ -~ -l~] 
- 10 -5 10 · -10 -5 10 



2 
0 

3 

5 5 

Or A-1 = 1 1 
0 -

5 5 
2 1 2 
- - --
5 5 5 

Now, multiplying (1) by A-1
, we get 

2 
0 

3 2 
0 

3 
-

5 5 

[~ 
-3 

!] [:] = 

5 5 

m 
1 1 

0 2 
1 1 

0 -- - -
5 5 5 5 
2 1 2 -2 2 1 2 

5 5 5 5 5 5 

2 
+O 

9 7 

[:] = 

+-

[~] = 

5 5 5 
1 2 

+O 
1 

(-: A-1A =I) or +- or 
5 5 5 
2 2 6 2 
- +-
5 5 5 5 

Comparing the corresponding elements on both sides. 

x=7/5, y=l/5, z=-215 

5.25 SOLUTION OF SYSTEM OF LINEAR EQUATIONS BY ELEMENTARY 
TRAN SF OR MA TION (OPERATIONS) 

Consider the following system of linear equations 

aux+ a12Y + a13z = h11 
a 21x + a22 y + a23 z = b12 

a31x- _a32Y + a33Z = bn 

Solution : The system of equations can be written as : 

[

a11 

Ifwe denote A= a21 

031 

Then we have AX= B 

Matrices and 
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Clearly A is the coefficient matrix (coefficient of the variable) X is the matrix 
representing the variables and B is column matrix representing the constants on right 
hand side of above equations. 

To solve the system of linear equations we reduce the coefficient matrix A into 
Echelon form by elementary row operations and then write the corresponding 
equations and then we solve. 

The system of linear equation is said to be consistent if it has solution and inconsistent 
if it has no solution. 

Example 24 : Solve the following system of equations by elementary row transfom1at.:ion. 

2.x+y+z=l 

x - 2y-3z=l 

3x +2y+ 4z =5 

Solution : The matrix form of the given system of equations is-

[~ 
1 

-!J m = [~l -2 

2 

[! 

-2 -!][~] = [~] 
Applying R1 B R2 1 

2 

[~ 
1 

:n~J = m Applying R3 -(R1 +R2 )➔ R2 3 

2 

[i 
-2 

-;H: J = rn Applying ! R2 ➔ R2 1 
3 

2 

[i 
- 2 

-~J [: J = r;i Applying R3 - 3R1 ➔ R3 l 

8 13 Z L"'J 

1 -2 -3 [: l = [ : l ·1 
0 l 2 Applying - R3 + R2 

8 13 
0 l zJ ¼ 

8 



0 1 2 y = I 1 -2 -3 [X] [ 1 l 
o o t z ¾ 

Writing the corresponding linear equation for the above, 

x-2y-3z=l 

y+2z = I 

3 3 
-z=-
8 4 

From the above equation z = 2, y = - 3, x = 1 

i. e. X = 1, y = - 3, Z = 2 

Example 25 : Solve the following system of equations by elementary transformations. 

x+y+z=3 

x+2y+3z=4 

x+4y+9z =6 

Solution: Writing the given system oflinear equations in matrix form. 

[: 
1 i][~] = [:] 
2 

4 

[i 
1 

=i][;] = [=!J Applying R1 - R2 ➔ R2 & R2 - R3 ➔ R3 -1 

-2 

Applying -R2 ➔ R2 ! R3 ➔ R3 [i 1 _i] [;) = [IJ 2 
- 1 

[i 
1 

j [:J = m Applying R2 + R3 ➔ R3 1 

0 

Noy.,- writing the corresponding linear equation for the above, 

x+y+z=3 

y+2z=l 

-z=O 

.'. Z = 0, y = 1, X = 2 

Matrices and 
Determinants 
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1. 

2. 

3. 

4. 

EXERCISE 1.5 

Reduce the following matrices in to echelon form. 

2 2 4 4 

(i) l~ 1 ~~o ~2 J (ii) : ! : : 
4 5 6 7 

(iii) l~ : ;J (iv) [~ ~: ~ J 
Find the inverse of the following matrices by using elementary transformation-

(i) l! ~ ;J (ii) l; -i -!] 

(iii) r ~ :; -11 r 
J, %, tj 

(iv) -- - 2 -
9 ' 9' 9 

_f 1 i 
9' 9' 9 

Solve the following systems of equations by matrix method (inverse of a matrix.) 

X + y + Z = 6 X + y + Z = 3 X - 2 y + 3z = 11 

(i) x-y+z=2 (ii) x+2y+3z=4 (iii) 3x+y-z=2 

2x+ y-z= 1 2x+ 4y+9z =6 5x + 3y+2z =3 

2x-y+3z=9 5x-y+z=4 

(iv) x+ y+z=6 (v) 3x+2y-3z=2 

x - y + z = 2 5x + 3 y - 2z = 5 

Solving the follo~g system of equations by elementary row transformation (by 
coeffecient matrix in echelon form). 

x+y+z=3 x-2y+_3z=11 2x-y+3z=9 

(i) x+2y+3z=4 (ii) 3x+ y-z=2 (iii) x+ y+z=6 

x + 4 y + 9z = 6 · 5x + 3 y + 2z = 3 · x - y + z = 2 

x+y+z=4 

(iv) 2x-2y+2z=5 

x-2y-z=-3 

2x-y+z=3 4x+ y+4z=7 

(v) x+3y-2z=ll (vi) ix+3y+2z=6 

3x-2y + 4z = 1 6x+9y+2z=14 

Ans.: (i) x = 1, y = 2, z = 3 (ii) x = 2, y = - 3, z = 1 (iii) x = 2, y = -3, z = l 

(iv) x=l, y=2, z=3 (v) x=l, y=-2, z=-3 



6 Linear Programming 
Formulation of LPP 

Chapter Includes: 

1. Introduction 
2. Structure of Linear Programming Problem (LPP) 

3. Formulation of Linear Programming Problems 
4. The Graphical Method of Solution 

5. Simple Linear Programming Problems 

6. Graphically Solving Linear Programs Problems with Two 
Variables (Bounded Case) 

7. Problems with Unbounded Feasible.Regions 

6.1 Introduction 

Linear programming is the general technique of optimum allocation of limited resources . 
such as labour, material, machine, capital etc., to several competing activities such as 
products, services,jobs, projects, etc., on the basis of given criterion of optimality. 

Linear Programming 
Formulation oflPP 
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The term limited here is used to describe the availability of scarce resources during planning 

period. The criterion of optimality generally means either performance, return on investment, 

utility, time, distance etc., The word linear stands for the proportional relationship of two or 

more variables in a model. Programming means 'planning' and refers to the process of 

determining a particular plan of action from amongst several alternatives. It is an extremely 

useful technique in the decision making p~cess of the management. 

6.2 Structure of Linear Programming Problem (LPP) 

The LP model includes the following three basic elements. 

(i) Decision variables that we seek to determine. 

(ii) Objective (goal) that we aim tooptimize(maximizeorminimize) 

(iii) Constraints that we need to satisfy. 

One of the major applications of linear algebra involving systems of linear equations is ir, finding 
the maximum or minimum of some quantity, such as profit or cost. In mathematics the proc~ 
of finding an extreme value (maximum or minimum) of a quantity (normally called a function) is 
known as optimization . Linear programming (LP) is a branch of Mathematics which deals 
with modeling a decision problem and subsequently solving it by mathematic.al techniques. The 
problem is presented in a form. of a linear function which is to be optimized (i.e maximized or 
minimized) subject to a set of linear constraints. The function to be optimized is known as the 
objective function . 

Linear programming finds many uses in the business and indll.8try, where a decision maker may want 
to utilize limited available resources in the best possible manner. The limited resources may include 
material, money, manpower, space and ti.me. Linear Programming provides various methods of_ 
solving such problems. In this unit, we present the basic concepts of linear p1ogramming problems, 
their fonnulation and methods of solution. 

6.3 Formulation of Linear Programming Problems 

Mathematica.lly, the general linear progre.mming problem (LPP) may be stated as: 

where 

Maximize or Minimize 

subject to 

Z = C1X1 + C2.X2 +,., + CnXn 

a11x1 + a12X2 + ... + a1nXn ($, =, ?.J bi 

a21X1 + a22X2 +., . + a2nXn ($, =, ?.) b-i 

am1X1 + a.n2x2 + ... + amnXn ($, =, ?.) bm 

X1 1 X2,,. • 1 Xn 2:. 0 

(1) 

http:mathematic.al


(i) the function Z is the objective function. 

(ii) x1; x2, ... , Xn are the decision variables. 

(iii) the expres.5ion (S, =, ?) means that each constraint may take s.ny one of the three signs. 

(iv) CJ (j = 1, ... , n) represents the per unit cost or profit to the lh variable. 

(v) bi (i = 1, . . . , m) is the requirement or availability of the ith constraint. 

(vi) x1 , x2, ... , Xn 2': 0 is the set of non-negative restriction on the LPP. In real life problems 
negative decision variables have no valid meaning. 

In this module we shall only discuss cases in which the constraints are strictly inequalities (either 
have a s or 2".:). 

In formulating the LPP as a mathematical model we shall follow the following four steps. 

1. Identify the decision variables and assign symbols to them (eg x, y, z, ... or x1 , x2, x2, 
. .. ). These decision variables a.re those quantities whose values we wish to determine. 

2. Identify the set iI coIIBtraints and express them in terms of inequalities involving the 
decision variables. 

3. Identify the objective function and express it is terms of the decision variables. 

4. Add the non-negativity condition. 

We will use the following product mix problem to illustrate the formulation of an LPP. 

Example : Prototype Example A paint manufacturer produces two t11PeS of paint, one type 
of standard quality (SJ and the other of top quality (T}. To make these paints, he needs two ingre- . 
dients, the 1J1gment and the resin. Standard quality paint requires 2 units of pigment and 3 units of 
resin for each unit made, and is sold at a profit of Rl per unit. Top quality paint requires 4 units 
of 1J1gment and 2 units of resin for each unit made, and is sold at a profit of Rl.50 per unit. He 
has stocks of 12 units of 1J1gment, and 10 units of resin. Formulate the above problem as a linf.ar 
programming problem to maximize his profit? 

We make the following table from the given data. 

Product Available 
Ingredients S-Type T-Type Stock 

Pigment 2 4 12 
Re.siu 3 2 10 

Profit (R/Unit) 1.0 1.5 

We follow the four steps outlined above for solving LP problems. 

l. In our prototype Example , the number of units of S-type s.nd T-type paint are the decision 
variables. 

linear Programmmg 
Formulation of LPP 
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2. The first constraint is the number of units of pigment available, while the second constraint 
is the number of units of resin available. It is required that the total pigment and resin used 
does not exceed 12 and 10, respectively. 

Pigment: for S is 2 I Resin: S = 3 
for Tis 4 T = 2 

Therefore the required mathematical expressions for the constraints are 

2S+4T < 12 

3S+ 2T < 10 

3. If we let P be the profit, then the objective in our example is to maximize profits 

P =S+ l.5T, 

i.e. the number of units of S times Rl plus the number of units of T times Rl.5 . 

4. In addition-to the given constraints, there are nonnegativity constra.ints which ensure that the 
solution is me~gful. This is a requirement that whatever the decision, the decision variables 
should not be negative: 

S~O ,T~O 

We can now write the complete mathematical model of the problem described in Example as 

Ma.xi.miBe: P = S + 1.5T 
Subject to: 2S + 4T ~ 12 

3S + 2T ~ 10 
S~O ,T~O 

(2) 

The above problem is an example of a maximization LPP. Maximization LPPs are usually identified 
by the ~ in all the constraints. Minimization problems can be identified by a ~ in all the constraints. 

In the next example we formulate 8- minimization LPP. 

Example: 

{Diet problem) A house wife wishes to mix two types of food Fi and F2 in such a way that the 

vitamin contents of the mixture contain at least 8 units of vitamin A and 11 units of vitamin B. 
Food F1 costs E60/Kg and Food F2 costs EBO/kg. Food F1 contains 3 units/kg of vitamin A and 5 
units/kg of vitamin B while Food F2 contains 4 unitsfeg of vitamin A and 2 units/kg of vitamin B. 
Formulate this problem as a linear programming problem to minimize the cost of the mixtures. 

We make the following table from the given data. 

Vitamin Food (in Kg) Requirement 
content Fi F2 (in units) 

Vitamin A {units/kg) 3 4 8 

Vitamin B (units/kg) 5 2 11 

Coot (E/Kg) 60 80 

http:addition.to


In formulating the LPP we use the following steps: 

1. The number of kilograms of the foods F1 and F2 contained in the mixture are the decision 
variables. Let the mixture contain x1 Kg of Food F1 and x2 Kg of food F2. 

2. In this example, the constraints are the minimum requirements of the vitamins. The minimum 
requirement of vitamin A is 8 units. Therefore 

Similarly, the minimum requirement of vitamin B is 11 units. Therefore, 

3. The cost of purchasing 1 Kg of food Fi is E60. 

The cost of purchasing 1 Kg of food F2 is EBO. 

The total cost of purchasing X1 Kg of food F1 and X2 Kg of food F2 is 

which is the objective function. 

4. The non-negativity conditions are 

Therefore the mathematical formulation of the LPP is 

Minimize: C = 60x1 + BOx2 
Subject to: 3x1 + 4x2 ~ 8 

5x1 + 2x2 ~ 11 
X1 ~ 0 ,X2 ~ 0 

6.4 The Graphical Method of Solution 

The graphical method of solving a linear programming problem is used when there are only two 
decision variables. If the problem has three or more variables, the graphical method is not suitable. 
In that case we use the simplex method which is discussed in the next section. 

We begin by giving some important definitions and concepts that are used in the methods of solving 
linear programming problems. 

1. Solution A set of values of decision variables satisfying all the constraints of a linear pro­
gramming problem is called a solution to that problem. 

2. Feasible solution Any solution which also satisfies the non-negativity restrictions of the 
problem is called a feasible solution. 

3. Optimal feasible solution Any feasible solution which maximizes or minimizes the objective 
function is called an optimal. feasible solution. 

Linear Programming 
Formulation of LPP 
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4. Feasible region The common region determined by all the constraints and non-negativity 
restriction of a LPP is called a feasible region. 

5. Corner point A comer point of a feasible region is a point in the feasible region that is 
the intersection of two boundary lines. 

The following theorem is the fundamental theorem of linear programming . 

Theorem : If the optimal value of the objective function in a linear programming problem 
e:ruts, then that value must occur at one ( or more) of the c.orner points of the feasible region. 

To solve a linear programming problem with two decision variables using the graphical method we 

lL'le the proce<lure outlined below; 

•--- -- - --~ 
Graphical method of solving a LPP -----

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Formulate the linear programming problem. 
Graph the feasible region and find the corner points. 
The coordinates of the corner points can be obtained by 
either inspection or by solving the two equations of 
the lines intersecting at that point. 
Make a table listing the value of the objective function 
at each corner point. 
Determine the optimal solution from the table in step 3. 
If the problem is of maximization (minimization) type, the solu~ion 
corresponding to the largest (smallest) value of the objective 
function is the optimal solution of the LPP. 

We will now use this procedure to solve some LPP where the model has already been determined. 
We use example {0.1.1) for illustration purposes The graph of the LPP is shown in Figure 1. 

Step 2 
The boundary of the feasible region consists of the lines obtained from changing t h~ l""",_,;~.lifr~s to 
equalities; i.e. The lines 

2S+4T= 12 and 3S+2T = 10 

Step 3 
TiiP. comer points (or extreme points) 8.1'.ld their corresponding objective functional va•uer, are. 

Step 4 

Extreme Points Profit (P == S + 1.5T) 

(0,0) 
(130' 0) 
(2,2) 
(0, 3) 

0 
10 
3 
5 

4.5 

We therefore deduce that the optimal solution is S = 2, T = 2 corresponding to a protlt P = 5. 
Thus profits are maximized when 2 units of standard quality and 2 units of top quality type pa.int 
are produced. 



6,-----,------,--- ----,----r-----r------,r--------, 

5 

3S+2T:10 

2 3 6 7 
s 

Figure 1: Graphical solution of the model of prototype example 

Example: 

A furniture company produces inexpensive tables and chairs. The production process for e.ach is 
similar in that both require a certain number of hours of e.arpentry work and a certain number of 
labour hours in the painting department. 

Each table takes 4 hours of carpentry and 2 hours in the painting department. Each chair- f"e1('Jires 
S hours of carpentry and 1 hour in the painting department. During the current production period, 
240 hours o! :-.arpentry time are available and 100 hours in painting is a11ailab!e. Bach l,able sold 
yields a profit of E7; e.ach chair produced i-3 sold for a E5 profit. 

Find the best combination of tables and chairs tc manufacture in order to reach the maximum profit. 

So~ution: 

We begin by summarizing the information needed to solve the problem in the form of a table. This 
helps us understand the problem being faced. 

Department 
Carpentry 
Painting 
Profit 

The objective is to maximize profit. 

Hours required 
to make 1 Unit 
Thbles Chairs 

4 3 
2 1 
7 5 

Available Hours 
240 
100 

Li'lear P-rogramming 
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The cnnstraints are 

1. The hours of carpentry time use.d cannot exceed 240 hours per week. 

2. The hours of painting time use.d cannot exceed 100 hours per week. 

3. The number of tables and chairs must be non~negative. 

The de,cision variables that represent the actual decision to be made are defined as 

x1 == number of tables to be produced 

X2 = number of chairs to be produced 

Now we can state the linear programming (LP} problem in terms of x1 and x2 and Profit (P). 

maximize 

subject to 

P = 1x1 +5x2 

4x1 + 3x2 ~ 240 

2x1 +x2 ~ 100 

X1 2: 0, X2 2: 0 

(Objective function) 

{hours of carpentry oonstraint} 

{hours of painting constraint) 

(Non-negativity corutmint} 

To find the optimal solution to this LP using the graphical method we first identify the region of 
frosible solutions and the corner points of the of the feo.sible region. The graph for this example is 
plotte.d in figure (2) 

In this example the corner points are (0,0}, (50,0}, {S0,40} and (0,80}. Testing these corner points 

on P = 1xi + 5x2 gives 
Corner Point Profit 

(0,0) 0 
(50,0) 350 
{30,40) 410 
{0,80) 400 

Be,cause the point (S0,40} produces the highest profit we conclude that producing 30 tables and 40 
chairs will yield a maximum profit of E410. 

Example: 

A small brewery produces Ale and Beer. Suppose that production is limite.d by scarce resources of 
com, hops and barley malt. To make Ale 5kg of Corn, 4kg of hops and 35kg of malt are re.quired. 
To make Be.er 15kg of com, 4 kg of hops and 20kg of malt are re.quired. Suppose that only 480 kg of 
ccm, 160kg of hops and 1190 kg of malt are available. If the brewery makes a profit of El S for each 
kg of Ale and E23 for each kg of Be.er, how much Ale .and Beer should the brewer produce in order 
to maximize profit? 

Solution: 

The given information is summarize.d in the table below. 



110 .---,--------,----,---.----------,-- -----.-----, 

90 
4%, +3:t:i =240 

80 

70 

60 
%'l 

50 

401 

30 2X} +X>J =100 

20 

10 

0 
0 10 30 40 50 60 70 

:t1 

Figure 2: Graphical solution of the carpentry /painting model 

Beverages Available 
Ingredients Ale Beer quantity 

Corn{Kg) 5 15 480 
Hops {Kg) 4 4 160 
Malt (Kg) 35 20 11-90 

Profit 13 23 

The decision variables are 

1. X1 the amount of Ale to be produced. 

2. x2 the amount of Beer to be produce.d. 

The profit function is given by P = 13x1 + 23x2. Thus the LP problem can be formulated as follows: 

Maximize 

Subject to 

P = 13x1 + 23x2 

5x1 + 15x2 ~ 480 

4x1 + 4x2 ~ 160 

35x1 + 20x2 ~ 1190 

X1 ~ 0, X2 ~ 0 

linear Programming 
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Figure 3: Graphical solution of the brewery model 

The graph for this example is plotted in figure {3) 

The comer points in this example are {0,0), {0,92), (12,28), {26,14) and (34,0). Testing these 
corner points on P = l3x1 + 23x2 gives 

Corner Point Profit 
(0, 0) 0 
(0, 32) 736 

(12, 28) 800 
(26, 14) 660 
(34, 0) 442 

Because the point (1£,28) produces the highest profit we conclude that producing 12 Kg of Ale and 
28 Rg of Beer will yield a maximum profit of E800. 

Example: (Medicine) A patient in a hospital is required to have at least 84 units of drug 

A and 120 units of drug B e,ach day. Each gro.m of substance M contains 10 units of drug A and 8 
units of drug B, and each gram of substance !" contains 2 units of drug A and 4 units of drug B. 
Now suppose that both M and N contain an undesirable drug C, 9 units per gram in M and 1 unit 
per gram in N. How many grams of substance.s Mand N should be mixed to meet the minimum daily 
requirements at the same time minimize the intake of drug C ? How many units of the undesirable 
drug C will be in this mixture? 

Solution: We start by summarizing the given data in the following table; 



AMOUNT OF DRUG PER GRAM MINIMUM DAILY 
Substanc,e M Substance N REQUIREMENT 

Drug A 10 Units 2 units 84 units 
Drug B 8 units 4-units 120 units 
Drug C 3 units 1 unit 

To form the mo.thematirol model> we start by identififing the decision variables. 

Let: x1 = Number of grams of substanc,e Mused. 
X2 = Number of grams of substance N used. 

The ou;c.dwe 1,s to minimize the intake of drug C. In terms of the decision variables, thl objecti~ 
.function is 

C = 3xi +x2 

which give., the amount of the undesirable drug C in x1 grams of Mand x 2 grams of N. 

The following conditions must be satisfied to meet daily requirements: 

( 

Number of units of ) ( Number of units of ) 
drug A + drug A 2". 84 

in x1 grams of substance M in x2 grams of substance N · 

{ Number of units of ) ( Number of units of ) 
drug B + drug B 2: 120 

\ in XJ grams of substance M in X2 grams of substana N 

{Number of grams of substance M wed} 2'. 0 

{Number of grams of substanc,e N used) 2: 0 

Writiag the above constraint inequalities in terms of the tkcision variable., x 1 and x2 and including 
the obj~t!ve function we obtain the fallowing linear programming model. 

Minimize 

Subject to 

C = 3x1 +x2 

l0x1 + 2x2 2: 84 

8x1 + 4x2 2: 120 

X l 2'. Q I X2 2". Q 

Figure 4 shows the graph of the feasible region obtained by plotting the system of inequalities. The 
evaluation of the objective junction at each corner point is show in the table below. 

CORNER POINT 

(x1i Xz) 
(0A2) 
(4,22) 
{15,0) 

Linear Programming 
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Figure 4: Graphical solution of the medicine mioiroiUl.tron example 

The graphical method is the easiest way to solve a small LP problem. However this method is useful 
only when there are two decision variables. When there are more than two decision variables, it is 
not possible to plot the solution on a two-dimensional graph and we must turn to more complex 
methods. 

The graphical nature of the above method makes its use limited to problems involving only two 
decision variables. For such problems it is possible to represent the constraints graphically. A 
graphical solution for a problem with a higher number of decision variables than two cannot be 
practically obtained because of the complexity of the graphs in higher dimensional spaces. An 
additional limitation of th.is method is that if the graph is not good, the answer may be very 
inaccurate. 

A very useful method of solving linear programming problems of any size is the so called Simplex 
method. The use of computers has made this method a viable tool for solving linear programming 
problems involving a very large number of decision variables. 

6.5 Simple Linear Programming Problems 
When both the obje9tive a.nd a.II the constraints in Expression a.re linear functions, 

then the optimization problem is ca.lied a. linear programming problem. This has the genera.I 
form: 

max z(xi, . . . , xn) = C1X1 + · · · + Cn~ 

s.t. a11X1 + · · · + a1nXn s; b1 

am1X1 + · · · + amnXn '.S bm 

h11X1 + · · · + h.i1Xn = r1 



Definition (Linear Function). A function z : Rn -t R is linear if there are constants 
c1, ... , c,.. E I so that: 

z(x1, ... , Xn) = C1X1 + · · · + C,..Xn 

Lemma (Linear Function). If z : R" -t JR is linear then for all x1, x2 E !Rn and for all 
scalar constants C¥ E R we have: 

z(x1 + x2) = z(x1) + z(x2) 
z(ax1) = C¥z(x1) 

Exercise Prove Lemma 2.2. 

For the time being, we will eschew the general form and focus exclusively on linear pro­
gramming problems with two variables. Using this limited case, we will develop a graphical 
method for identifying optimal solutions, which we will generalize later to problems with 
arbitrary numbers of variables. 

Example. Consider the problem of a toy company that produces toy planes and toy 
boa.ts. The toy company can sell its planes for $10 and its boats for $8 dollars. It costs $3 
in raw materials to make a plane and $2 in raw materials to make a boat. A plane requires 
3 hours to make and 1 hour to finish while a boat r_equires 1 hour to make and 2 hours to 
finish. The toy company knows it will not sell anymore than 35 planes per week. Further, 
given the number of workers, the company cannot spend anymore than 160 hours per week 
finishing toys and 120 hours per week making toys. The company wishes to maximize the 
profit it makes by choosing how much of each toy to produce. 

We can represent the profit maximization problem of the company as a linear program­
ming problem. Let x1 be the number of planes the company will produce and let x2 be 
the number of boats the company will produce. The profit for each plane is $10 - $3 = _$7 
per plane and the profit for each boat is $8 - $2 = $6 per boat. Thus the total profit the 
company will make is: 

z(x1,x2) = 7x1 + 6x2 

The company can spend no more than 120 hours per week making toys and since a plane 
takes 3 hours to make and a boat takes 1 hour to make we have: 

3x1 +x2.::; 120 

Likewise, the company can spend no more than 160 hours per week finishing toys and since 
it takes 1 hour to finish a plane and 2 hour to finish a boat we have: 

X1 + 2X2 ~ 160 

Finally, we know that x1 ~ 35, since the company will make no more than 35 planes per 
week. Thus the complete linear programming problem is given as: 

max z(x1,x2) = 7x1 + 6x2 

s.t. 3x1 + X2 ~ 120 

X1 + 2X2 ~ 160 

X1 ~ 35 

X1 ~ 0 
X2 ~ 0 
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Exercise . A chemical manufacturer produces three chemicals: A, B and C. These chem­
ical are produced by two processes: 1 and 2. Running process 1 for 1 hour costs $4 o.nd yields 
3 units of chemical A, 1 unit of chemical B and 1 unit of chemical C. Running process 2 for 
1 hour cOITT.S $1 and produces 1 units of chemical A, and 1 unit of chemical B (but none of 
Chemical C). To meet customer demand, at least 10 units of chemical A, 5 units of chemical 
B and 3 units of chemical C must be produced daily. Assume that the chemical manufacturer 

1 wants to minimize the cost of production. Develop a linear programming problem describing 
the constraints and objectives of the chemical manufacturer. [Hint: Let x1 be the amount 
of time Process 1 is executed and let x2 be amount of time Process 2 is executed. Use the 
coefficients above to express the cost of running Process 1 for x1 time and Process 2 for x2 

time. Do the same to compute the amount of chemicals A, B, and C that are produced.] 

Modeling Assumptions in Linear Programming 

Inspecting Example (or the more genera.I Problem) we can see there are several 
assumptions that must be satisfied when using a linear programming model. We enumerate 
these below: 

Proportionality Assumption: A problem can be phrased as a linear program only if 
the contribution to the objective function and the left-hand-side of each constraint 
by each decision variable (x1; .•• , x,,) is proportional to the value of the decision 
variable. 

Additivity Assumption: A problem can be phrased as a linear programming prol>­
lem only if the contribution to the objective function and the left-hand-side of each 
constraint by any decision variable x, (i = 1, ... , n) is completely indepe.a<lent of 
any other decision variable x1 (j f. i) and additive. 

Divisibility Assumption: A problem can be phrased as a linear programming prol>­
!em only if the quantities represented by each decision variable are infinitely divisible 
(i.e., fractional answers make sense). 

Certainty Assumption: A problem can be phrased as a linear programming prol>­
lem only if the coefficients in the objective function and constraints are known with 
certainty. 

The first two assumptions simply assert (in English) that both the objective function and 
functions on the left-hand-side· of the (in)equalities in the constraints are linear functions of 
the variables x1, ... , Xn-

The third assumption asserts that a valid optimal answer could contain fractional values 
for decision variables. It's important to understand how this a~umption comes lnto play­
even in the toy making example. Many quantities can be divided into non-integer values 
( ounces, pounds etc.) but many other quantities cannot be divided. For inst<>,·1ce: c:.n we 
really expect that it's reasonable to make 1/2 a plane in the toy making example? When 
values must be constrained to true integer values, the linear programming problem is called an 
integer programming problem. 

6.6 GraphicalJy Solving Linear Programs Problems with Two 
Variables (Bounded Case) 

Linear Programs (LP's) with two variables can be solved graphically hy plotting tbe 
feasible region along with the level curves of the objective function. We will show that we 
can find a point in the feasible region that maximizes the objective function using the level 
curves of the objective function. We illustrate the method first using the problem from 
Example. 



Example (Continuation of Example). Let's continue the example of the Toy Maker 
begin in Exa.mplE'. To solve the linear programming problem graphi:;ally, begir. by draw­

ing the feasible region. This is shown in the blue shaded region of Figure . 
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Figure Feasible Region and Level Curves of the Objective Function: The 
shaded region in tbe plot is the feasible region a.nd represents the intersection of 
the five inequalities constraining the values of :z:1 and :z:2. On the right, we see the 
optima.I solution is the "last" point in the feasible region that intersects a level set 
as we move in the direction of increasing profit. 

(,0 

A~er plotting the feasible region, the next step is to plot the level curves of the objective 
function. In our problem, the level sets will have the form: 

-7 C 
7x1 + 6x2 = C =} X2 = 6X1 + 6 

This is a. set of parallel lines wit h slope - 7 /6 a.nd intercept c/6 where c ca.n be varied as 
needed. The level curves for various values of c are parallel lines. In Figure they a.re 
shown in colors ranging from red to yellow depending upon the value of c. Larger valuc,s of 
c are more yellow. 

To solve the linear programming problem, follow the level sets a.long the gradient (sh,Jwn 
as the black arrow} until the last level set (line) intersects ,the feasible region. If you are 
doing this by ha.nd, you ca.n draw a single line of the form 7x1 + 6x2 = c a.nd tbeTJ sinply 
draw parallel lines in the direction of the gradient (7, 6)". At some point, these li::J.es will fail 
to intersect the feasible region. The last line to intersect the feasible region will do so 3.t a 
point that maximizes the profit. In this case, the point that maximizes z(x1,x2) = 7x1 +6x2, 
subject to the constraints given, is (xi, x2) = (16, 72) . 

Note the point of optimality (x1, xi) = (16, 72) is at a corner of the feasible region. This 
corner is formed by the intersection of the two lines: 3x1 + x2 = 120 and x1 t 2x2 = ~60. In 
this case, the constraints 

3x1 + X2 ~ 120 

X1 + 2X2 ~ 160 

are both binding, while the other constraints are non-binding. In .generaJ , we will see that 
when an optimal solution to a linear programming problem exists, it" will always be at the 
intersection of several binding constraints; that is, it will occur at a corner of a higher­
dimensional polyhedron. 
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Formalizing The Graphical Method 

In order to formalize the method we've shown above, we will require a. few new definitions. 

Definition Let r E JR, r ~ 0 be a non-negative sca.la.r and let x0 E Rn be a. point in 
Rn. Then the set: 

Br(xo) == {x E Rnl !Ix - Xol! ~ r} · 
is ca.lied the closed ball of radius r centered at point Xo in r. 

In R2
, a. closed ball is just a disk and its circular boundary centered a.t Xo with radius r. 

In 1 3, a closed ball is a. solid sphere and its spherical centered at Xo with radius r . Beyond 
; three dimensions, it becomes difficult to visualize wha.t a closed be.II looks like. 

We can use a closed ba.ll to define the notion of boundedness of a. feasible region: 

Definition Let S ~ .IR.11
• Then the set S is bounded if there exists an Xo E .IR.11 and finite 

r ~ 0 such that Sis totally contained in Br(Xo); that is, SC Br(Xo)-

Definition is illustrated in Figure. The set S is shown in blue while the ba.11 of 
radius r centered at Xo is shown in gra.y. . 

We ca.n now define a.n algorithm for identifying the solution to a linear programing 
problem in two variables with a. bounded feasible region (see Algorithm 1): 

The example linear programming problem presented in the previous section has a single 
optimal solution. In genera.I, the following outcomes ca.n ·occur in solving a linear program­
ming problem: 

(1) The linear programming problem has a. unique solution. (We've already seen this.) 
(2) There a.re infinitely many alternative optima.I solutions. 
(3) There is no solution a.nd the problem's objective function ca.n grow to positive 

infinity for maximization problems ( or negative infinity for minimization problems). 
( 4) There is no solution to the problem at a.IL 

Case 3 above ca.n only occur when the feasible region is unbounded; that is, it cannot be 
surrounded by a ball with finite radius. We will illustrate each of these possible outcomes in 
the next four sections. We will prove that this is true in a. later chapter. 

Figure A Bounded Set: The set S (in blue) is bounded because it can be 
entirely contained inside a ball of a finite radius r and centered at some point XQ. 

In this example, the set S is in R2. This figure also illustrates th.e fact that a ball 
in R.2 is just a disk and its boundary. 



Algorithm for Solving a Linear Programming Problem Graphically 
Bounde,d. Feasible Region, Unique Solution 

(1) Plot the fe&Sible region defined by the constraints. 
(2) Plot the level sets of the objective function. 
(3) For a maximiwion problem, identify the level set corresponding the greatest Oeast, for 

minimization) objective function value that intersects the fe&Sible region. This poinL 
will be at a comer. 

(4) The point on the comer intersecting the greatest Qeast) level set is a oolution to the 
linear programming problem. 

Algorithm 1. Algorithm for Solving a Two Variable Li.near Programming Problem 
Graphically-Bounded Feasible Region, Unique Solution Case 

Example. Suppose the toy maker in Ex.ample finds that it can sell planes for a 
profit of $18 each instead of $7 each. 1:'he new linear programming problem becomes: 

max z(x1,x2) = l8x1 + 6x2 

s.t. 3x1 + x2 s 120 

X1 +2x2 S 160 

X1 S 35 

X1 ~ 0 

X2 2'.: 0 

Applying our graphical method for finding optimal solutions to linear programming problems 
yields the plot shown in Figure. The level curves for the function z(x1,x2) = 18x1 + 6x2 

are parallel to one face of the polygon boundary of the feasible region. Hence, as we move 
further up and to the right in the direction of the gradient (oorresponding to larger and 
larger values of z ( x 1, x2) ) we see that there is not one point on the boundary of the feasible 
region that intersects that level set with greatest value, but instead a side of the polygon 
boundary described by the line 3x1 + x2 = 120 where x 1 E [16, 35]. Let: 

S = {(x1, x2)13x1 + ~ S 120, X1 + 2xf S 160, x1 S 35, x1, x2 2 0} 

that is, S is the feasible region of the problem. Then for any value of xi E [16, 35] and any 
value x2 so that 3zi +x; = 120, we will have z(x!,x2) 2 z(x1,x2) for all (x1,x2) ES. Since 
there a.re infinitely many values that x1 and x2 may take on, we see this problem has an 
infinite number of alternative optimal solutions. 

Based on the example in this section, we can modify our algorithm for finding the solution 
to a linear programming problem graphically to deal with situations with ·an infinite set of 
alternative optimal solutions (see Algorithm 2); 

Algorithm for Solving a Linear Programming Problem Graphically 
Bounded Feasible Region 

(1) Plot the feasible region defined by the coDBtraints. 
(2) Plot the level sets of tbe objective function. 
(3) Fbr a maximization problem, identify the level set corresponding the greatest (least, for 

minimization) objective function value that intersects the feasible region. This point 
will be at a corner. 

( 4) The point on the corner intersecting tbe greatest (least) level set is a solution to the 
linear pfogramming problem. 

(5) If the level set corresponding to the greatest (least) objective function value 
is parallel to a side of the polygon boundary next to the corner identified, 
then there are infinitely many aJternative optlmaJ solutions and any point 
on this side may be chosen as an optimal solution. 
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Algorithm 2. Algorithm for Solving a Two Variable Linear Programming Problem 
Graphically-Bounded Feasible Region Case 

Exercise. Modify the linear programming problem from Exercise to obtain a linear 
programming problem with an infinite number of alternative optimal solutions. Solve the 
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Figure. An example of infinitely many alternative optimal solutions in· a linear 
programming problem. The level curves for z(x1, x2) = 18x1 + 6x2 are parollel to 
one face of the polygon boundary of the feasible region. Moreover, this side contains 
the points of greatest value for z(x1, :i;z) inside the feasible region. Any combination 
of (x1, x2) on the line 3x1 +x2 = 120 for x1 E [16, 35] will provide the larges, i.;ossible 
value z(:z:1,x2) can talce in the feasible region S. 

new problem . and obtain a description for the set of alternative optima.I solutions. [Hint: 
Just as in the example, x 1 will be bound between two value corresponding to a side of the 
polygon. Find those values and the constraint that is binding. This will provide you with a 
description of the form for any xj E [a, b] and x; is chosen so that cxj + dx; = v, the point 
(xt,x;) is an alternative optimal solution to the problem. Now you fill in values for a, b, c, 
d and v.] 

Problems with No Solution 

Recall for any mathematical programming problem, the feasible set or region is simply 
a. subset of in. If this region is empty, then there is no solution t0 the mathematical 
programming problem and the problem is said to be over constrained. We illustrate this 
case for linear programming problems with the following example. 

Example. Consider the following linear programming problem: 

ma.x z(x1,x2) = 3x1 + 2x2 
1 1 

S.t. 
40

x1 + 
60

x2 ~ 1 

1 1 
50x1 + 

50
x2 ~ 1 

X1 2'. 30 

X2 ~ 20 

http:Busines.fI


The level sets of the objective and the constraints are shown in Figure. 

Figure,. A Linear Programming Problem with no solution. The feasible region 
of the linear programming problem is empty; that is; there are no values for x1 and 
x2 that can simultaneously satisfy all the constraints. Thus, no solution exists. 

The fact that the feasible region is empty is shown by the fact that in Figure there is 
no blue region- Le., all the regions a.re gray indicating that the constraints are not satisfiable. 

Based on this example, we can modify our previous algorithm for finding the solution to 
linear programming problems graphically (see Algorithm 3): 

Algorithm for Solving a Linear Programming Problem Graphically 
Bounded Fe.asible Region 

(1) Plot the feasible region defined by the constraints. 
(2) If the feasible region is empty, then no solution exists. 
(3) Plot the level sets of the objective function. 
( 4) For a maximization problem, identify the level set corresponding the greatest (least, for 

minimization) objective function value that intersects the tea.sible region. This point 
will be at a corner. 

(5) The point on the corner intersecting the greatest (least) level set is a solution to the 
linear programming problem. 

(6) If the level set corresponding to the greatest (least) objective function value 
is parallel to a side of the polygon boundary next to the corner identified, 
then there are infinitely many alternative optimal solutions and any point 
on this side may be chosen as an optimal solution. 

Algorithm 3. Algorithm for Solving a Two Variable Linear Program.ming Problem 
Graphically-Bounded Feasible Region Case 
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6.7 Problems with Unbounded Feasible Regions 

Again: we'll tackle the issue of linear programming problems with unbounded feasible 
regions by illustrating the possible outcomes using examples. 

Example. Consider the linear programming problem below. 

max z(x1,x2) = 2x1 -x2 

S.t. X1 - X2 ~ 1 

2x1 +x2 ~ 6 

X1,X2 ~ 0 

The feasible region and level curves of the objective function a.re shown in Figure. The 

Figure. A Linear Programming Problem with Unbounded Feasible Region: 
Note that we can continue to make level curves of z(x1, :z:2) rorresponding to larger 
and larger values as we move down and to the right. These curves will .continue 
to intersect the feasible region for any value of v = z(x1, :z:2) we choose. Thus, we 
can make z(x1, :z:2) as large as we want and still find a point in the feasible region 
that will provide this value. Hence, the optimal value of z(x1, x2) subject to the 
constraints +oo. That is, the problem is unbounded. 

feasible region in Figure is clearly unbounded since it stretches upward a.long the x2 axis 
infinitely fe.r and also stretches rightward a.long the x1 axis infinitely far, bounded below by 
the line x1 - x2 = 1. There is no way to enclose this region by a disk of finite radius, hence 
the feasible region is not bounded. 

We can draw more level curves of z(x1,x2) in the direction of increase (down and to the 
right) as long as·we wish. There will always be an intersection point with the feasible region 
because it is infinite. That is, these curves will continue to intersect t he feasible region for 
any value of v = z(x1,x2) we choose. Thus, we can make z(x1,x2) as large as we want and 
still find a point in the feasible region that will provide th is value. Hence, the largE'ilt value 



z(x1, x2) can take when (x1, x2) are in the feasible region is +oo. That is, the problem is 
unbounded. 

Just because a linear programming problem has an unbounded feasible region does not 
imply that there is not a finite solution. We illustrate this case by modifying example. 

Example. (C,ontinuation of Example). Consider the linear programming problem 
from Example with the new objective function: z(x1,x2) = (1/2)x1 - x2. Then we have 
the new problem: 

1 
max z(xi, x2) = 2x1 - X2 

S.t. X1 - X2 :::; 1 

2x1 + X2 ~ 6 

X1,X2 ~ 0 

The feasible region, level sets of z(x1, x2) and gradients are shown in Figure. In this 
case note, that the direction of increase of the objective function is away from the direction 
in which the feasible region is unbounded (i.e., downward). As a result, the point in the 
feasible region with t~e largest z(x1,x2) value is (7/3,4/3). Again this is a vertex: the 
binding constraints are x1 - x2 = 1 and 2x1 + x2 = 6 and the solution occurs at the point 
these two lines intersect. 

-10 

Zi 
20 

Figure, A Linear Programming Problem with Unbounded Feasible Region 
and Finite Solution: Io this problem, the level Cl.lf\'.eS of z(x1, x2) iocreaae in a more 
"southernly" direction that in Example -that is, away from tbe direction in 
which the feasible region increases without bound. The point in the feasible region 
with largest z(x1, l:2) value is (7 /3,4/3). Note again, this is a vertex. 
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Based on these two examples, we can modify our algorithm for graphically solving a 
two variable linear programming problems to deal with the case when the feasible region is 
unbounded. 

Algorithm for Solving a Two Variable Linear Programming Problem Graphically 

(1) Plot the feasible region defined by the constraints. 
(2) If the fea.5ible region is empty, then no solution •exists. 
(3) If the feasible region is unbounded goto Line 8. Otherwise, Goto Line 4. 
( 4) Plot the level sets of the objective function. 
(5) For a maximization problem, identify the level set corresponding the greatest (least, for 

minimization) objective function value that intersects the feasible region. This point 
will be at a corner. 

(6) The point on the corner intersectiog the greatest (least) level set is a solution to the 
linear programming problem. 

(7) If the level set corresponding to the greatest (least) objective func.t inri v~lne 
is parallel to a side of the polygon boundary next to the corner identified, 
then there are infinitely many alternative optimal-solutions and any point 
on this side may be chosen as an optimal solution. 

(8) (The feasible region is unbounded): Plot the level sets of the objective function. 
(9) If the level sets intersect the feasible region at larger and larger (smaller and smaller for 

a minimization problem), then the problem is unbounded and the solution is + oo (-oo 
for minimization problems). 

{10) Otherwise, identify the level set corresponding the greatest (least, for minimization) 
objective function value that intersects the feasible region. This point will be at a 
corner. 

(11) The point on the corner intersecting the greatest (least) level set is a solution to the lin­
ear programming problem. If the level set corresponding to the greatest {least) 
objective function value is parallel to a side of the polygon boundary next 
to the corner identified, then there are infinitely many alternative optimal 
solutions and any point on this side may be chosen as an optimal solution. 

Algorithm . Algorithm for Solving a Linear Programming Problem Graphically­
Bounded and Unbounded Case 



Exercise: 

Use the graphical method to solve each of the following LP problems. 

1. A wheat and barley farmer has 168 hectare of ploughed land, and a capital of E2000. It costs 
E14 to sow one hectare wheat and El0 to sow one hectare of barley. Suppose that his profit is 
E80 per hectare of wheat and E55 per hectare of barley. Find the optimal number of hectares 
of wheat and barley that must be ploughed in order to maximize profit? What is the maximum 
profit? [80,88], Profit Ell 240 

2. An company manufactures two electrical products: air conditioners and large fans. · The as­
sembly process for each is similar in that both require a certain a.mount of wiring and drilling. 
Bach air conditioner takes 3 hours of wiring and 2 hours of drilling. Each fan must go through 
2 hours of wiring and 1 hour of drilling. During the next production period, 240 hours of wiring 
time are available and up to 140 hours of drilling time may be used. Each air conditioner sold 
yields a profit of E25. Each fan assembled may be sold for a profit of E15. Formulate and 
solve this linear programming mix situation to find the best combination of air conditioners 
and fans that yields the highest profit. [40 air conditioners, 60 fans, profit E1900J 

3. A manufacturer of lightweight mountain tents makes a standard model and an expedition 
model for national distribution. Each standard tent requires 1 labour hour from the cutting 
department and 3 labour hours from the assembly department. Each expedition tent requires 2 
labour hours from the cutting department and 4 labour hours from the assembly department. 
The maximum labour hours available per day in the cutting department a.vd the assembly 
department are 32 and 84 respectively. If the company makes a profit of E50 on each standard 
tent and E80 on each expedition tent, use the graphical method to determine how many tents 
of each type should be manufactured each day to maxi.mize the total daily profit? [El480] 

4. A manufacturing plant makes two types of inflatable boats, a two-person boat and a four­
person boat. Each two-person boat requires 0.9 labour hours from the cutting department 
and 0.'3 labour hours from the assembly department. Each foi.:r-person boat requ.ires 1.8 
labour hours from the cutting department and 1.2 labour hours from the assembly department. 
The maximum labour hours available per month in the cutting department and the assembly 

· department are 864 and 672 respectively. The company makes a profit of E25 on each twer­
person bo:at ai;d E40 on each four-person boat. Use the graphical method to find the maximum 
profit. [E21 600] 

5. LESCO Engineering produces chairs and tables . Each table takes four hours of labour from 
the carpentry department and two hours of labour from the finishing department. Each chair 
requires three hours of carpentry and one hour of finishing. During the current week, 240 
hours of carpentry time are available and 100 hours of finishing time. Each table produced 
gives a profit of E70 and ea.ch chair a profit of ESQ. How many chairs and tables should be 
made in order to maximize profit? · [40,30], P = ·~10 

6. A company manufactures two products X and Y. Each product has to be processed in three 
departments: welding, assembly and painting. Each unit of X spends 2 hours in the welding 
department, 3 hours in assembly and 1 hour in painting. The corresponding times for a unit 
of Y are 3,2 and 1 respectively. The man-hours available in a month are 1500 for the welding 
department, 1500 in assembly and 550 in painting. The contribution to profits and fixed 
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overheads a.re ElO0 for product X and E120 for product Y. Formulate the appropriate linear 
programming problem and solve it graphically to obtain the optimal solution for the maximum 
contribution. [150, 400], P = 63000 

7. Suppose a manufacturer of printed circuits has a stock of 200 resistors, 120 transistors and 150 
capacitors and is required to produce two types of circuits. 

Type A requires 20 resistors, 10 transistors and 10 capacitors. 

Type B requires 10 resistors, 20 transistors and 30 capacitors. 

If th~ profit on type A circuits is E5 and that on type B circuits is El2, how many of each 
circuit should be produced in order to maximize profit? [6,3], P = 66 

8. A small company builds two types of garden chairs. 

Type A requires 2 hours of machine time and 5 hours of craftsman time. 

Type B requires 3 hours of machine time and 5 hours of craftsman time. 

Each day there a.re 30 hours of machine time available and 60 hours of craftsman time. The 
profit on each type A chair is E60 and on each type B chair is E84. formulate the appropri­
ate linear programming problem and solve it graphically to obtain the optimal solution that 
maximizes profit. [6,6], P = 864 

9. Namboard produces two gift packages of fruit. Package A contains 20 peaches, 15 apples and 
10 pea.rs. Package B contains 10 peaches, 30 app1es and 12 pea.rs. Namboard has 40 000 
peaches, 60 000 apples and 27 000 pears available for packaging. The profit on pa.cka.ge A is 
E2.00 and the profit on B is E2.50. Assuming that all fruit packaged can be sold, what number 
of packages of types A and B should be prepared to maximize the profit? [750 type A, 1625 
type B] 

10. A factory ID.a.Ilufactures two products, each requiring the use of three machines. The first 
machine can be used at most 70 hours; the second machine at most 40 hours; and the third 
machine at most 90 hours. The .first product requires 2 hours on Machine 1, I hour on Machine 
2, and 1 hour on Machine 3; the second product requires 1 hour each on machines land 2 and 
3 hours on Machine 3. If the profit in E40 per unit for the first product and E60 per unit 
for the second product, how many units of each product should be manufactured to maximize 
profit? [24,22, P = 2280] 



Exercises : Minimization problems 

1. A house wife wishes to mix together two kinds of food, I and II, in such a way that the mixture 
contains at least 10 units of vita.min A, 12 units of vitamin B and 8 units of vitamin C. The 
vita.min contents of one kg of food is given below; 

Vitamin A Vitamin B Vita.min C 
Food I 1 2 3 
Food II 2 2 1 

One Kg of food I costs E6 and one Kg of food II costs ElO. Formulate the above problem as 
a linear programming problem and find the least cost of the mixture whlch will produce the 
diet. [2,4, cost = E52] 

2. A chicken farmer can buy a special food mix A at 20c per Kg and special food mix B at 40c per 
Kg. Each Kg of mix A contains 3000 units of nutrient Ni and 1000 units of nutrient N2; each 
Kg of mix B contains 4000 units of nutrient Ni and 4000 units of nutrient N2• If the minimum 
daily requirements for the chickens collectively are 36000 units of nutrient Ni and 20000 units 
of nutrient N2, how many pounds of each food mix should be used each day to minimi1R. daily 
food costs while meeting (or exceeding) the minimum daily nutrient requirements? What is 
the minimum daily cost? [8kg of mix A, 3 kg of mix B; C = E2.80 per day] 

3. A farmer can buy two types of plant food, .mix A and mix B. Each cubic metre of mix A 
contains 20 kg of phosphoric acid, 30 kg of nitrogen, and 5 kg of potash. Each cubic metre of 
mix B contains 10 kg of phosphoric acid, 30 kg of nitrogen and 10 kg of potash. The minimum 
monthly requirements are 460 kg of pho.sP,horic acid, 960 kg of nitrogen, and 220 kg of potash. 
If mix A costs E30 per cubic metre and mix B costs E35 per cubic metre, how many cubic 
metres of each mix should the farmer blend to meet the minimum monthly requirements at a 
minimal cost? What is the cost? [20 m3

, 12 m3, E1020] 

4. A city council voted to conduct a. study on inner city community problems. A nearby university 
was contacted to provide sociologists and research assistants. Allocation of time and costs per 
week are given in the table. How many sociologists and how many research assistants should 
be hired to minimize the cost and meet the weekly labour-hour requirements? What is the 
weekly cost? 

LABOUR HOURS MINIMUM LABOUR-
Research HOURS NEEDED 

Sociologist Assistant PER WEEK 

FIELDWORK 10 30 180 
RESEARCH CENTRE 30 10 140 

COSTS PER WEEK (E) I 500 300 

5. A laboratory technician in a medical research centre is asked to formulate a diet from two 
commercially packaged foods, food A and food B, for a group of animals. Each kg of food A_ 
contains 8 units of fat, 16 units of carbohydrates, and 2 units of protein. Each Kg of food B 
contains 4 units of fat, 32 units of carbohydrate and 8 units of protein. The minimwn daily 
requirements a.re 176 units of fat, 1024 units of carbohydrate, and 384 units of protein. If 

Linear Programming 
Formulation of LPP 
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food A costs 5c per Kg and food B costs 5c per Kg, how many kilograms of each food should 
be used to meet the minimum daily requirements at the least cost? What is the cost of this 

amount? 

6. A can of cat food, guaranteed by the manufacturer to contain at least 10 units of protein, 20 
units of mineral matter, and 6 units of fat, consists of a. mixture of four different ingredients. 

Ingredient A contains 10 units of protein, 2 units of mineral matter, and ½ unit of fa.t per 
100g. Ingredient B contains 1 unit of protein, 40 units of mineral matter, and 3 units of fat 

per 100g. Ingredient C contains 1 unit of protein, 1 unit of mineral matter, and 6 units of fat 

per lGOg. Ingredient D contains 5 units of protein, 10 ~ts of mineral matter, and 3 units 
of fat per 100g. The cost of each ingredient is 3c,· 2c, le, and 4c per 100g, respectively. How 

ro: uy ~?-mrees o!' each should be used to minimise the cost of the cat food, while still meeting 
the guaranteed composition? 



7 Simplex Method 

Chapter Includes: 
1. Introduction 

2. Standard Form 

3. The Simplex Procedure 

4. The Optimal Solution 

5. Special Cases in the Simplex Procedure 

·6. The Minimisation Problem : Dual Problem 

7. Transportation Model 

8. The Simplex Method and Transportation Problems 

7. I Introduction 

The Simplex method is based on an understanding of the algebra of the linear programming problem 
being solved. We begin by stating a general maximising linear programming problem involving n 
unknown (or decision) variables and m constraints as 

Simplex Method 
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Maximise: Z = C1 X 1 + C2X2 + · . · + CnXn 

Subject to: a11X1 + a12X2 + , .. + a1nXn ~ b1 

°'21X1 + a22X2 + .. , + ~Xn ~ f>.i 
(I) 

Om1X1 + Om2X2 + •. • + amnXn ~ bm 

X1 , X2 , • • • , Xn ?: 0 

or equivalently 

n 

max z = I:qx, 
i=l 

n 

subj. to: I: akiXi < b,. (2) 
i~l 

k = 1,2, ... ,m 

Xi ~ 0, i = 1, 2, .. . , n (3) 

We note in particular that all the constraints involve the ~ sign. We will use this type of maximising 
linear programming problem to introduce the Simplex method. Other types of inequalities as well 
as the minimising problem will be disc~ later. The number m, of constraints, can be less, equal 
or even greater than n. 

The Simplex method is similar to the graphical method in that it uses the extreme points of the 
feasible region to search for the solution. The ma.in difference is that with the Simplex method, once 
the initial vertex has been chosen, movement from one vertex to another is in such a way that the 
value of the objective function improves with ea.ch move. Although there are n + m variables in m 
equations, the solution of the problem concerns the n variables in the original constraints. If m < n 
then some of the decision variables will have zero values. 

Before we can employ the Simplex method we need to rewrite the problem in a standard form in 
which the constraints are equations rather than inequalities. 

7.2 Standard Form 
We consider the k•th constraint of the general linear· programming problem (1) 

(4) 

We convert the k-th inequality constraint to an equality constraint by introducing a new variable, 
Xn+k _2'. 0, ca.lied a slack variable. The name of the variable derives from the fact that if the left 
hand side of the constraint is to balance with the right hand side of the constraint, then something 
has to be added to the left side. 



If we do this for each of them constraints we can write the standard form of the system (4) as 

Ma.xim.ise 
Subject to: 

z = E:=l C;Xi 

E~1 a,1:,x, + Xn+k = b,1: 
k = 1,2, .. . ,m 
x, ~ O,xn+k ~ 0 , i = 1,2, . .. ,n 

(5) 

We can write the standard form of the linear programming problem as a set of matrix equations 

where 

and 

Cn 
0 
0 

0 

T 

z = Cx 

Ax = b 

llmn 

, x= 

1 0 
0 1 

0 0 ... fl 

We note the following about the standard linear programming problem: 

(6) 

(7) 

(8) 

1. The objective function is unchanged. The slack variables can be included in the objective 
function with zero coefficients. 

2. Them constraints of the new system are represented by m equations and there are now n + m 
unknown variables (the solution variables plUB the slack variables); 

3. All the variables including the slack variables are nonnegative; 

4. The right side values are nonnegative. 

Definition 7.1 : A set of ooriables xi, together which satisfy the equality constraints Ax = b are 
said to be basic variables. These basic variables form a basic solution or a basis. If all the basic 
variables are nonnegative then they form a basic feasible solution. We note that a basic feasible 
solution may not nece:Jsarily optimise the objective· function. 

In relation to the graphical approach we point out that every basic feasible solution is an extreme 
point of the feasible region, and conversely, every extreme point is a basic feasible solution. 

As we disc~ the Simplex procedure we will use our prototype example of the paint mix problem 
presented by the linear programme (2), whose solution has been previously found using the graphic&! 
method. 

Simplex Method 
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The linear programming problem (2) is restated below with a slight cb.an.ge in the names of the 
decision variables (x1 instead of Sand x2 instead of T) as 

Maximise: 
Subject to: 

Example 7 .1 : 

p = Xt + 1.5x2 
2x1 + 4x2 S 12 
3x1 + 2x2 ~ 10 
Xt ~ 0 ,X2 ~ 0 

Writing the linear programme ( 11) in standard form we obtain 

Maximise: 
Subject to: 

where X3 and x4 are the slack variables. 

p = X1 + 1.5X2 
2x1 +4x2 +x3 = 12 
3x1 + 2x2 +x4 = 10 
xi~ O,x2 ~ 0 

(9) 

(10) 

Once we have written a linear programming in standard we are ready to solve it using the Simplex 
method. 

7.3 The Simplex Procedure 
The Simplex procedure involves the fo~owing steps: 

Step 1: Find the initial basic feasible solution 
The simplest choice of an initial feasible bamc is to assume that none of the decision variables are 
basic. Hence we initially assume that the basic solution consists only of the slack variables. 
i.e. Set x, = 0, i = 1, 2, ... , n and Xn+k I O, k -= I, 2, ... , m. This choice of the initial solution 
means that we initially assume that objectiye functional value is zero. In terms of the graphical 
method we start at the ·origin so as to move along the best possible route to the optimal solution. 

Example 7 .2 : If in the constraints of the standard form ( 12) we set x1 = 0, x2 = 0 we have the 
initial basic feasible solution x3 = 12, x4 = 10, and P = 0. 

Step 2: Set up the initial Simplex tableau 
In this step we arrange the various matrices and vectors involved in the matrix form of the linear 
programming problem in the simplex tableau. This tableau contains all the information about the 
current baslc variables and their corresponding values, the optimality status of the solution. The 
method then continues to use the principle of the Gauss-Jordan procedure to (,0mp:ite t-oe !lext 
improved solution. 

A typical initial simplex tableau has the form shown in Table 1 

In tne tableau. 

l. The top row shows both then+ m decision and slack variables xi, x2, . .. , Xn+1, ... , Xn+m as 
labels for the corresponding columns; 

2. The coefficients of the constraints are shown in the middle rows; 

3. The last row is the z-equation, showing the objective coefficients; 



Basic X1 X2 Xn Xn+l Xnt2 Xn+m 

Xn+i au a12 a1n 1 0 0 b1 
Xnt2 a21 az2 a2n 0 1 0 b-i 

0 

Xn+m Clml am2 amn 0 0 1 bm 

z -C1 -ez -c.n 0 0 0 0 

Table 1: The general simplex tableau. 

4. The extreme left column shows the basic variables; 

5. Each basic variable 

• appears in exactly one equation in which it has a coefficient l. The column it labels has 
all zeros except in the row in which it is shown as a basic variable 

• hM a value shown on the extreme right column. 

Initially the negative coefficients in the z-equation are a result of writing the objective equation as 

(! 1) 

so that z itself is treated like a variable. When the decision variable.s are initially set to zero, the 
initial value of z is also zero. The value of z will vary as the decision variables assume nonzero 
values. ID particular for the maximising problem.z will increase as any of the nonbasic variables 
with a negative entry in the z-row is increased. 

Example 7.3: 
The initial Simplex tableau of our e.xample is 

Tableau 1: 

Basic X1 X2 X3 X4 R.H.S. 

X3 2 w 1 0 12 

X4 9 2 0 1 10 
p -1 - 1.5 0 0 0 

The initial basic variables are x3 = 12 and x4 = 10 which you can read from the extreme left and 
right columns of the tableau. 

Step 3: Tust for optimality 
At any stage of the procedure you can check whether the current basic solution is optima.I. This 
information is contained in the objective row of the tableau. If all the entries in the objective tJW are 
nonnegative, then the current basic solution is optimal. ID particular a.11 the columns associated 
with the basic solution will have zero coefficients in the objective row while the columns associated 
with the nonbasic variables will have positive coefficients. 

For our example, in the last row of Tableau 1 we have the negative coefficients -1 and -1.5 corre­
sponding to x1 and x2. Thw the present solution is not optimal. 
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Step 4: Choose the variable to enter/leave the basic set 
First you decide which of the nonbasic variables will bring about the best improvement on the 
objective value if entered into the basic set. i.e. if it is increased from zero. The nonbasic variables 
corresponding to the negative coefficients in the objective row are candidates for entry into the basic 
set. The entering variable is the one associated with the column with the most negative coefficient 
in the z-row. This column is known as the pivot column. 

Since this variable will become basic, one of the basic variables will have to become nonbasic ( or 
will leave the basic set) and be reduced to zero. The leaving variable determined by the quotients 
of the right hand column and the pivot column. You first compute quotients of the right hand side 
and positive coefficients of the pivot column. Thus you compare only.positive quotien~. Once you 
have computed all positive quotients, you choose the row which has the lea.5t quotient. This is called 
the pivot row. The leaving variable is the one which corresponds to the pivot row on the left hand 
side of the tableau (among the basic variables). 

The element at the intersection of the pivot row and pivot column is called the pivot coefficient. 
lt is normally highlighted by circling it (we will highlight it by boldface type). It is necessary to 
identify this element in order to move on to the next step. 

In our example the variables x 1 and x2 are the candidates for entry into the basis. The most negative 
. coefficient in the last row is -1.5 in the wlumn labeled x2. This is the pivot wlumn and thus the 

entering variable is x2. This variable is raised from zero a nonzero value which will be determined 
in the next step. 

Now we need to decide which variable should leave the basis. If we divide the coefficients of the last 
wlumn by wrresponding wefficients in the x2-wlumn we obtain the quotients 1; = 3 and ~ = 5. 
The smallest quotient is :J, corresponding to X3 in the extreme left wlumn. Thus the x3-row is the 
pivot row, the variable x 3 has to leave the basis as x2 enters, and assumes the value :J. The pivot 
wefficient is 4- (in box} 

We are now ready to proceed to the next step. 

Step 5: Update the Simplex tableau 
The next step is to update the tableau by reducing it using the Gauss reduction principle. By 
updating the tableau you are essentially determining the effect of the introduction of the new basic 
variable and disca.rding the one that has left the basis. 

By Gauss reduction, you reduce the pivot coefficient to one and all other coefficients in that column 
to zero. Let us illustrate this using our example once again. 

In updating the tableau we first divide the X3 -row by 4 to reduce the pivot coefficient to 1. The 
coefficients 2 and -1.5 in the pivot column .should be reduced to O by either addi119 or subtmcting a 
suitable multiple of the pivot row. i.e. R2 becomes Rti - 2R1,R3 becomes Ra+ l.5R1, Performing 
these Gaussian operations leads to the tableau 

Tableau 2 

Xi X2 X3 X4 

X2 1 4 0 9 

X4 0 _l 1 4 
p -4 0 3 

j 0 4.s 

Thus the objective functional value has improved from O to 4-5 as x2 is raised from zero to :J. Note 



that 4.5 == 1.5 x 3, the c.ontribution made by x2 in the objective. Step 6: Repeat Steps 3 - 5 
Test for optimality and pivot again until the optimal solution is obtained or some other conclusion 
is made of the problem. 

Once again we test whether the current solution is optimal. Looking at the last row of the Tableau 2 
above we see that there is still a negative coefficient, so the solution is not optimal. We repeat the last 
three steps of the Simplex procedure. Since-¼ in the objective row is the only negative coefficient, the 
corresponding column is the pivot column and xi. enters the basis. The leaving variable is obtained 
by C()mparing the quotients I := 6 and 1 == 2. Hence x4 should leave the basis and give way to x i. 

The pivot coefficient is 2, at the intersection of the pioot row and pivot C()/umn. 

Updating the tableau by Gauss reduction leads to the tableau 

Tubleau 3 

Xi X2 X3 X4 

X2 0 1 8 -4 2 
Xi 1 0 _l l 2 
p 0 0 5 1 5 16 8 

Since there are no more negative coefficients in the objective row of Tablrou 9 we conclude that the 
current solution is optimal. 

7 .4 The Optimal Solution 

Once the optimality test is met (i.e. all coefficients in the objective row are nonnegative), we can 
extract the solution from the final tableau. The optimal solution consists of the basic decision 
variables appearing in the extreme left column. The corresponding values appear in the extreme 
right column. Any decision variable which is not in the basic set has a zero value. 

Referring this to our particular example, the extreme columns of the final tableau give the _solution 

which agrees with what we obtained earlier using the graphical approach. 

We note what was mentioned earlier about the coefficients of the basic variables in the last row and 
the existence of a unit matrix in the tableau. 

H we relate this procedure to the geometrical solution we observe the following movement.s: From 
the origin the search for the solution moved to the vertex (0, 2) then to (2, 2). 

We will now solve the following linear programming problem to illustrate the implementation of the 
complete Simplex algorithm. 

Example 7.4 : 
Consider the following linear programming problem in standard form 

Maximise 
Subj. w 

z = 120xi + lOOx2 
2x1 +2x2 +x3 = 8 
5xi +3x2 +x4 == 15 
X1, X2, X3, X4 ~ 0 

Simplex Method 
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The initial tableau is shown in Tableau 1. The initial basic feasible solution is obtained by setting 
x1 = x2 = 0, so that x3 = 8 and X4 = 15. 

Tableau 1 

z 

2 

5 

2 

3 
-120 -100 

1 0 
0 1 
0 0 

8 
15 

0 

The initial solution is not optimal since there are negative coefficients in the z-row. 
The entering variable is x1 correS'ponding to the most negative coefficient, -120. 
The required quotients to determine the le,aving variable are J = 4, and \5 = 3 of which Sis smaller. 
Hence x4 is the leaving variable. The pivot element is therefore 5. 

In pivoting, X1 now replaces X4 in the extreme left column. The new X1 -row entries are o;tzined by 
dividing by 5. The variable x3 remains in the basic solution lrut the coefficients in the corresponding 
row are obtained by carryi,ng out a row operations on x3-row and z-row so that the x1 -column entries 
are zero except for the pivot coefficient. 

The new table,au is shown in Tableau 2. 

Tableau 2 

X1 X3 X4 

X3 0 1 2 2 -5 

Xt 1 0 ! 3 
z 0 - 28 0 24 360 

The new basic feasible solution, x1 = 3, x2 = 0, is not optimal. Hence we continue pivoting. The 
next variable to enter the basis is x2. The leaving variable is X3 {quotient,s are 5/2 and 5) Pivoting 
on ½ leads to the new tableau shown in Tableau 9. 

Tableau 3 

X1 X2 X3 X4 

X2 0 1 4 -2 2 
X1 1 0 -~ ! ~ 

z 0 0 35 10 430 

Since all the entries in the z-row of the last tableau, Table,au 3 are positive, we deduce that optimality 
has been reached. 

The solution is obtained from reading the first and last columns of the table,au. On the fir~t column, 
the basic variables are x1 and x2. The corresponding values in the last column are ; and t The 
maximum value of z is 490, corresponding to z in the last column. 

Hence the optimal solution is 
3 

X2 = 2, z = 430 



Example 7.5 : 

Solution: 

Maximize P = 70x1 + 50x2 + 35x3 
subject to 4x1 + 3x2 + X3 $ 240 

2X1 + X2 + X3 $ 100 
-4x1 +x2 $ 0 
X1 2:: 0, X2 2:: 0, X3 2:: 0. 

We add the slack variables X4 1 xs and X6 to convert the problem to standard form. 

Maximize P = 70x1 + 50x2 + 35x3 
subject to 4x1 + 3x2 + x3 + X4 = 240 

2x1 + X2 + X3 + X5 = 100 
-4X1 + X2 + X6 = 0 
xi , x2 , X3 , X4, X5, Xe 2:: 0 

The initial Tableau is slwwn below 

Tableau 1 
Basic X1 X2 X3 X4 X5 X6 RHS 

X4 4 3 1 1 0 0 240 

X5 (!] 1 1 0 1 0 100 
X6 -4 1 0 0 0 1 0 
p -70 -50 -35 0 0 0 0 

The initial basic feasible solution is obtained by setting x1 = x2 = x 3 = 0 so that X4 = 240, 
x5 = 100 and X6 = 0. This solution is not optimal since there are negative coefficients in the last 
row containing P. The entering variable is x 1 rorresponding to the most negative coefficient, -70. 
The qwtients are 1

~
0 = 50 and 2!° = 60 of which 50 is the smallest (note that we don't consider 

the quotient ~4 == 0). Thu.s xs is the leaving variable and the pivot element is 2. 

Dividing row 2 by 2 gives 

Basic X1 X2 X3 X4 

R1: X4 4 3 1 1 
R2: X1 1 1 l 0 2 2 
R3: X6 -4 1 0 0 
~; p -70 -50 - 35 0 

To obtain Tableau 2 we perform the following row operotions 

This gives 

Tableau 2 
Basic 

X4 

X1 
X6 

p 

X1 
0 
1 
0 
0 

X2 

l!J 
I 
2 
3 

-15 

X3 X4 X5 

-1 1 -2 
1 0 1 
2 2 
2 0 2 

0 0 35 

X5 X6 RHS 
0 0 240 
l 0 50 2 
0 1 0 
0 0 0 

X5 RHS 
0 40 
0 50 
1 200 

0 3500 

Simplex Method 
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Since -15 is the only negative coefficient in the P-row, it follows that the entering variable is x2. 

The quotients required to determine the leaving variable are ~ = 66f, ~ = 100, 1 = 40 of which , 
40 is the smallest. Thus X4 is the leaving variable and 1 is the pivot coefficient. 

To o~tain Tableau 4 we perform the following row operations 

This gi.ves 

Tableau 9 
Ba.sic 

X2 

X1 

X5 
p 

X1 X2 

0 1 
1 0 
0 0 
0 0 

X3 X4 X5 

-1 1 -2 
1 l 3 -2 2 m -3 8 

-15 15 5 

X5 RHS 
0 40 
0 30 
1 80 
0 4100 

Looking at the ooefficient of the P-row in Tableau 3 we note that the only negative coefficient is • 15. 
Thus, x3 is the entering variable. The quotients are W = 16, ¥ = 30. Thus, x6 is the leaving 
variable and 5 is the pivot coefficient. 

Dividing row 8 by 5 gives 

Ba.sic Xl X2 X3 X4 X5 X6 RHS 

x2 0 1 -1 1 -2 0 40 
X1 1 0 1 l 3 0 30 -2 2 
X3 0 0 1 3 8 1 16 -i ;:; ); 

p 0 0 -15 15 5 0 4100 

To obtain Tableau 4 we perform the fallowing row operations 

Tableau 4 
Basic X1 X2 X3 X4 X5 X6 RHS 

X2 0 1 0 i _J l 56 6 5 5 
X1 1 0 0 1 l 1 14 Io -10 5 
X3 0 0 1 3 B 1 16 - :;;; 5 i; 

p 0 0 0 6 39 3 4340 

Since all the entries in the P-row of Tableau 4 are positive, we deduce that the optimal solution has 
been reached. The solution is 

x 1 = 14, x2 = 56, X3 = 16 and maximum P = 4340 

7.5 Special Cases in the Simplex Procedure 

Certain situations may arise which do not comply to the assumptions so far made in implementing 
the Simplex procedure. Some of these situations and how they are hand.le.cl a.re discus.sed below. 



It may happen that during pivoting there is a tie in the entering and leaving variables; i.e. the most 
negative coefficient of the z-equation appears under more than one variable; or the smallest quotient 
corresponds t~ more than one variable. N9rmally the tie is broken ( called tie breaking) by making 
an arbitrarily selection of the entering or leaving variables among those that qualify. 

7.5.2 Unbounded Solution 

Unboundedness describes linear programs that do not have finite solutions.Under very rare occasions 
in the Simplex method it may turn out that every coefficient in the pivot column is either zero or 
negative (called the unbounded solution situation). Hence there would be no way of computing a 
leaving variable. In this case, it may be necessary to check if there has been no computational errors 
or else z would be unbounded. 

7 .6 The Minimisation Problem : Dual Problem 

We have so far discussed the Simplex method as applied to solving a maximizing linear programming 
problem. One way to solve a minimisation problem is to solve an equivalent ma.xi.mi.sing problem 
called the dual problem. The theory of duality simply states that every linear programming 
problem can be written in two fon;ns: the primal form and the dual form. The original problem is 
called the primal problem. The objective of a dual problem is opposite that of the given primal 
problem. Thus a primal roiniroi~tion problem has a dual maximisation problem. The same holds for 
a maximisation problem. That is, a primal maximisation problem bas a dual minimisation problem. 

Sometimes it is easier to solve the dual problem than it is to solve the primal problem. The 
relationship between the two types of problems is given in the following statement. 

There is an important result called the Von Neumann duality principle which relates the optimal value 
of the dual problem to that of the primal problem. The statement of the result is that the optimal 
solution of a primal linear programming problem, if it exists, bas the same value at the 
optimal solution of the dual problem. Thll6 the optimal value determined for the dual problem 
is the same optimal value for the primal problem. 

7 .6·, l Solving a Minimization Problem 

A minimization problem is in standard form if the objective function 

is to be minimized subject to the constraints. 

anx1 + a12X2 +. ·, + a1nXn > b1 

a21 X1 + a22X2 + , · · + a2nXn > ~ 

where x, 2: 0 and b, 2: 0. To solve this problem we use the following steps. 

Simplex Method 
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1. Form the augmented matrix for the given system of inequalities, and add a bottom row 
consisting of the coefficients of the objective function. 

llml am2 

2. Form the transpose of this matrix. 

t12n 

llm1 

llm2 

llmn 

1 

q 

Cn 

1 

3. Form the dual maximization problem corresponding to this standard matrix. That is, find the 
maximum of the objective function given by 

W = b1Y1 + b-iy2 + · • · + bmYn 

subject to the constraints. 

a11Y1 + a21Y2 + · · · + llm1Ym < C1 

a12Y1 + a:uy2 + ... + am2Ym < c:i 

where Y1 ~ 0, Y2 ~ 0, ... and Ym ~ 0 and Ym ~ 0 

4. Apply the Simplex Method to the dual maximization problem. The ma.ximintie,;1 va.lue of 
w will be the minimum value of z. Moreover, the values of x1, x2, . . . and Xn will :.:ccur in the 
bottom row of the final simplex tableau, in the columns corresponding to the slack variables. 

We will illustrate the concept of duality by way of a minimization linear programming problem. 

7.6.2 Constructing the-Dual Problem 

Example 7.6: 
Consider the minimization problem 

Minimize : 
Subject to: 

C = l6x1 +45x2 
2x1 + 5:i:2 ~ 50 
X1 + 3x2 ~ 27 

X1,X2 ~ Q 

(12) 



The following steps are involved in constructing the dual problem from a given primal problem. 

1. Construct a special augmented matrix from the constraints coefficients of the primal problem 
without introducing slack/surplus variables and append the objective coefficients. 

2x1 + 5x2 ~ 50 

A~ [ 
2 5 50] 

X1 + 3x2 ~ 27 1 3 27 
l6x1 + 45x2 = C 16 45 1 

2. Obtain the transpose of the augmented matrix 

AT~ [ : 
1 ;] 3 

50 27 

Z. Write out the dual problem from the transpose matrix. This new problem will always be a 
maximization problem with S problem constraints. To avoid confusion, we shall use different 
variables in this new problem: 

I 
3 45 16 l 2y1 + 112 s 16 

5y1 + 3112 $ 45 
50y1 + 27y2 = p 27 1 

The dual of the minimization problem is the following maximization problem: 

Maximize 
Subject to 

4. Solve the dual problem in the usual way. 

p = 50y1 + 27y2 
2y1 + 1/2 ~ 16 

5y1 + 3y2 ~ 45 

Yi~ 0, Y2 ~ 0 

Note the following changes when constructing the dual problem, in addition to the change of nots.tion: 

I. The objective becomes the opposite of that of the primal problem. 

2. $ signs become ~ and vice versa. 

3. There are as many decision variables in the dual pr0blem as there are constraints in the primal 
problem. 

4. There are as many constraints in the dual problem as there are decision variables in the primal 
problem. 

5. The objective coefficients of primal problem become the right side (resource) values of the dual 
problem. 

6. The right side (resource) values of the primal problem become the objective coefficients of the 
dual problem. 
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Example 7. 7 : 
Form the dual problem of 

Step 1. Form the matrix A 

Minimize 
Subject to 

C = 4bx1 + l2x2 + 40x3 
2x1 + x2 + 5x3 ~ 20 
4x1 + X2 + X3 ~ 30 

A~ [ 

2 1 5 20 l 4 1 1 30 
40 12 40 1 

Step 2. Find the transpose of A, AT. 

A'~ [ 

2 4 40 

] 
1 1 12 
5 1 40 
20 30 1 

Step 3. State the dual problem. 
Maximize p = 20y1 + 30y2 
Subject to 2Yt +4y,i ~ 40 

Yl +Y2 ~ 12 
5tli+y2:S40 

!/1, Y2 ~ 0 

In the next example we solve 11. minimization problem by solving its dual. 

Example 7.8: 
Find the minimum value of 

subject to the ronstraints 

where x1 ~ 0 and x2 ~ 0. 

Solution: 

Obje.ctive function 

Constraints 

The augmented matrix corresponding to this minimization problem is 

2 1 6 

1 1 4 

3 2 1 



Thus, the matriz corresponding to the dual maximization problem is given by the following transpose. 

2 1 3 

1 1 2 

6 4 1 

This implies that the dual T7lllrimization problem is a., follows. 

Dual ma:eimization problem: Find the maximum value of 

Subject to the constraints 

where Y1 ~ 0 and Y2 ~ 0. 

After writing the dual problem in standard form we obtain the initial tableau 

Tableau 1 

Basic Y1 

1 

Y2 Y3 
1 

1 

1 

0 
p -6 -4 0 

Y4 
0 3 
1 2 
0 0 

We see from the table.au that the pivot column is the Yi -column. The quotients are ~ and I = l. 
Hence the 113-row is the pivot row. Thus Yi is the entering variable which replaces y3, the leaving 
variable. The pivot element at the intersection of the pivot row and pivot column is 2. To update 
the tableau we 

Performing the Gauss reductions we obtain Table.av. 2 given below. 

Tableau 2 

Basic Y1 Y2 Y3 Y4 
Yl 1 2 0 2 

Y4 0 1 1 1 
- 2 2 

p 0 -1 3 0 9 

We deduce that tJ:ie current solution is not optimal. (Why~) Updating once more we obtain Table.au 
S given below 

Tableau 3 

Basic !/1 Y2 Y3 Y4 
Yl 1 0 1 -1 1 

1h 0 1 -1 2 1 
p 0 0 2 2 10 

The current solution is optimal since all the coefficients in the last row are nonnegative. 
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7.6.3 Reading the Solution of the Primal Problem 

We are now going to extract the solution of the primal problem fr!lm the final simplex tableau of 
the dual problem. The optimal objective value is 

P=C= 10 

Since the above final tableau is for the dual problem, we recall that in transposing the primal problem 
the objective coefficients of the original variables became the right-hand values of the constraints. 
This :nea.os that each original variable now corresponds to a slack variable. Thus we do not read 
the sobti0c. in the sa.n:.e way as for the primal simplex tableau. The optima.I values of the original 
vari&bles correspond to the slack variables in the fina.l tableau of the dual problem. 

For ..,u~ particull'l-1: ex.~.rr>ple, the decision variables x,_ a.nd x2 of the primal problem correspond to 
the slack variables of the dual problem a.nd their values a.re the oorresponding coefficients in the last 
row ·)f the final simplex tableau. Thus the solution is contained in the Ya and y4 columns a.nd is 

a.nd the objective ;a.lue is in the usual column i.e 

Yl = 1, 

X2 = 2 

Note that if we substitute the basic va.rie.bles of the dual problem in the dual objective function we 
have 

P:::: 6y1 + 4y2 = {6)(1) + (4)(1) = 10. 

We get the sa.me objective value if we substitute x1 = 2, x2 = 2 into the primal objective function 

C = 3x1 + 2x2 = (3)(2) + (2)(2) = 10 

'l;'his verified the Von Neumann Optimality Principle. 

7.7 Transportation Model 

Tro:r.sportation models deal with the determination of a. minimum-cost plan foJ:" transporting a oom­
mo :l:.ty f:rom a. number of sources to a. number of destinations. To be more specific, let there be 

! m so<i.r~e$ (or origins) that produce the commodity a.nd n destinations (or sinks) that demand the 
comrnodity. At thE' • ' h source, i = 1, 2, · · · , m, there are Si units of the com.nwcl.i'.~ ~'Y.!\•fal)l~ The 
demand at the j-th destination, j = 1, 2, • • • n, is denoted by d1. The~-of transporting one unit 
of the commodity from the i-th source to the j-th destination is C.j• Let Xij, 1 ~ i ~ m, 1 ~ j ~ n, 
be ti.le nwnbers of the commodity that are being transported from the i-th source to the j-th des­
tination. Our problem is to determine those Xij that will minimize the overall transportation cost. 
An optima.I solution Xij to the problem is ca.lled a transportation plan. 

Source 8i d; Destination 

I; .,, \ 
I; _,, \ 

I/ / \ 

{ij§-"'- - - - - n dn 



We note that at the i-th source, we have the i-th source equation 

n 

L Xij = Si, 

j=l 

while at the j-th destination, we have the j-th destination equation 

m 

[xi; = d;, 
i=l 

Notice that if the total demand equals the total supply, then we have the following balanced trans-

porlatio'!1 equation: 
m n n n m n 

[si = LLXij = LLXij = [d; 
i=l i=l j=l j:=l i=l j=l 

and the model is said to be balanced. 
In the case of an unbalanced model, i.e. the total demand is not equal to the total supply, 

we can always add dummy source or dummy destination to complement the difference. In the 
following, we only consider balanced transportation models. They can be written as the following 
linear programming problem: 

m n 

where [si = [di· 
i=~ j =l 

m n 

min xo = L L CijXij 

subject to 

i=l j =l 

n 

L x.3 = Si l ~ i ~ m, 
j=l 
m 

L Xij = di l ~ j ~ n, 
i=l 

1 ~ i ~ m, 1 ~ j ~ n, 

(13) 

Notice that there are mn variables but only m + n equations. Tb initiate the simplex method, 
we have tc s-dd m+n more artificial variables and solving the problem by the simplex :;net:iod seems 
to be a very tedious task even for moderate values of m and n. However, the transportation models 
possess W'T': \mportant properties that make the calculation easier to be ban :lied. 

·Jsi.ug the vector notations 

X = [x11,X12,X13, ·· · ,X1n1 X21,··· ,X2n, · ·· ,Xm1,··· ,Xmn f, 
C= [c11,c11,c13,··· ,c1n,c:n,··· ,c2n,··· ,Cm1 ,· · · ,Cmnf, 

b = [s1,s2, ··· ,sm,d1,d2, · ·· ,dnf , 

the transportation model can be stated as the following linear programming problem: 

min xo = cTx 

subject to 
{

Ax= b, 

X ;?: 0. 

where the technology matrix A of the model is of the form: 

(14) 
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1 1 ... 1 
1 1 

A= 

1 1 
1 1 

0 1 

... 1 

1 1 

1 
1 

1 

1 

1 

0 

1 1 · · · 1 
1 

1 

1 

Hence if we denote llii the [(i - l)n + j]-th column of the matrix A, then 

a.1 = ei +em+i i == 1,2, · · ,m, j = 1,2,· · · ,n. 

(15) 

(16) 

Here as usual, ~ denotes the i-th unit vector. Next we a.re going-to prove some algebraic properties 
of the matrix A. · 

Theorem 7.1. The rank of the matrix A is equal tom + n-1. 

Proof. We first claim that rank(A) ~ m + n - 1. Let Si be the i-th raw of A (source rows) and d1 
be the (m+ j)-th row of A (destination r,ows). Then it is clear from (6.3) that 

m n 

L Si - L d; == o. 
i=l j=l 

Hence the rows Si and d1 are linearly dependent. Thus rank(A) < m + n. 
Next we prove that rank(A) ~ m + n - 1 by constructing a nonsingular (m + n - 1)-by­

( m + n - l) submatrix of A. Suppose we ta.lee the n--th, the 2n-th, the 3n--th, • • · , the mn-th columns 
of A together with the 1-st, the the 2-nd, the 3-rd, ·• •,the (n -1)-th columns of A. This resulting 
matrix is of order ( m + n) by ( m + n - l). If we delete the lam row of the matrix, then we obtain 
the following (m + n - 1)-by-(m + n - 1) matrix: 

10 011· · · 1 
1 

D= 
1 

1 
0 1 

1 

Since D is a triangular matrix, detD = 1. Therefore D is non-singular and rank(A) ~ rank(D) == 
m + n - 1. Thus we conclude that rank(A) = m + n - 1, which is equivalent to saying that one of 
the equations in (7.1.)is redundant. 

Thus a basic solution to (7 .1 J has at most m + n - 1 nonzero entries. 

Theorem 7.2. Every minor of A can only have one of the values 1, -1 or 0. More precisely, given 
any Ak, a k-by-k submatrix of A, we have detAk = ±l or 0. 

Proof. Notice first that every column of A hes exactly two 1 's, thus any column of Ak ~ either 
two l's, only one 1 or exactly no 1. If Ak contains a column that has no 1, then clearly detAk = 0 
and we are done. Thus we may assume that every column of Ak contains at least one 1. There .are 
two cases to be considered. The first case is where every column of Ak contains two l's. Then one 



of the 1 's must come from the source rows and the other one must come from the destination rows. 
Hence subtracting the sum of all source rows from the sum of all destina.tion rows in A,1: will give us 
the zero vector. Thus the row vectors of A,1; are linearly dependent. Hence det A.1o = 0. It remains 
to consider the case where at least one column of A,1: contains exactly one 1. By expanding A,1: with 
respect to this column, we h.ave 

det A,1: ;:: ± det A.1:-1 

where the sign depends on the indices of that particular 1. Now the theorem is proved by repeating 
the argument tp A,1;-1, 

Definition 7.2 : A matrix A is said to be totally unimodular if every minor of A is either 1, -1 or 
0. 

Thus the coefficient matrix of a transportation problem is totally unimodula.r. 

7.8 The Simplex Method and Transportation Problems 

Let us first prove that transportation models always have optimal solution. In fact, given problem 
(13) , if we put 

where 
m n 

a== Lsi == LdJ, 
i:l j=l 

then it is ea.gy to check that it is a solution to Ax = b. Hence transportation problems always have a 
feasible solution. Since all x,i and Ci; are nonnegative, xo ~ 0. In particular, the objective function is 
bounded from below. Hence it follows that a transportation problem must have an optimal solution. 

Let us see what happens if (13) is solved by simplex method. Since rank A = m + n - I, a 
basic optimal solution to (13) have only m + n - 1 basic variables, i.e. no more than m + n - I of 
the x,J in the solution are different from zero. To solve (13) by simplex method, we first change it 
into standard form by adding m + n artificial variables to (14) . Then we have 

min Xo = CT X + Ml T Xa 

{ 
I A, I ] [ x ] = b, 

subject to x~~ ~ O. 
(17) 

Here Xa is the artificial variable. Since basic feasible solution exists, the artificial variables for the 
problem can always be driven to zero in phase I ( or else the problem has no optima.I. solution, a 
contradiction). Since (14) and (17) have the same optimal solution, basic optimal solution to (17) 
can have no more than m + n - 1 non-zero variables, i.e. a basic optimal solution to (17) must have 
at least one artificial variable in the basis at rero level. (Recall that artificiaJ variables at zero level 
in Phase II indicate redundancy). 

Suppose that we .have found by 'some means a basic feasible solution to (17) which is also a 
feasible solution to (14) , (i.e. we are in phase II). Let B be the basic matrix ( of order m + n) of 
[A, J1, then B contains m + n - 1 columns of A and one artificial vector q with the corresponding 
artificial variable at zero level. Therefore we may consider the m+n-1 linearly independent column 
vectors of A in B as a set of basis vectors for (14) . The collection of these m + n - I vectors will 
be denoted by a!fJ and the corresponding basic variables will be denoted by x!tJ• More precisely, if 
B = [a!p,qJ is basic matrix for (17), we then define B = [a!fJ] as a basic matrix for (14) . 

We observe that any column vector Elij of A is just a linear combination of vectors of B, i.e. 

Simplex Method 

Sdf-/nstrBCIHINlf Materiql 
ill 



Sd[-Jnslnlc#onp/ Mtuerig/ 

ill. 

where:[ means summation over all vectors in the basis. We recall that (18) is just the cllilnge of 
a{J 

basis equation (2.24): 

(19) 

where Bis (m + n)-by-(m + n -1) and contains the columns a!p• Thus in the language of simplex 
method, Y(afJ)(ii) are jUBt the entri~ in the simplex tableau at the current iteration. Now we prove 
the two moot important properties of tra.nsportation models. 

Theorem 7.3. The coefficients Y(afJ)(ij) can only take the values 1, -1 or 0. 

Proof, Let R; be the (in+ n - 1)-by-(m + n - 1) matrix obtained from B in (19) by deleting the 
ith row of B. By (19) , R;y;; is the same as liij with the ith entry removed. Hence b-1 (l~ , we see 
that 

Thus 

Yij = R; 1
em+l-j = d l D. (adj R;)em-1+;, 

et ll.i 

where adj R; is the adjoint of R;. Note that R; is obtained by talcing (m + n - 1) columns and 
{m + n - 1) rows of A, hence is a submatrix of A. Th.is also follows from the fact that R; is a. 
submatrix of B and B is a submatrix of A. Since B is a basic matrix, R; has full rank. Thus, by 
Theorem 6.2, we have det R; = ± 1. Since the entries of adj R; are just minors of R; and hence of 
A, their values ca.n only be ±1 or 0. Thus we see that Yij = ±1 or O. 

Thus (18) becomes 

8-ij = [(±l)a!p, 
a{J 

where we have omitted those a!13 with Y(afJ)(i;) = 0 in the summation. We note that the conclusion 
of Theorem 7.3. holds for any linear programming problem where its coefficient matrix is totally 
unimodular. 

Theorem 7.4. (The Stepping Stones 'rheorem). Let B = {aap} be a set of (m+n-1) linearly 
independent columtl..9 of A. Then for all column vector a.; of A, 1 :Si~ m, 1 :S j :Sn, we have 

(20) 

where a.,1 , a., ,,,+i, a..; are in B forl = 1, · .. , k - l. Moreover, the expression (20) is unique. 

Proof. Since rank A = m + n -1, all column vectors of A ca.n be written as a linearly combinations 
of vectors in B. Moreover by Theorem 6.3, we have 

a.; = [(±l)ao13 = L aap '- I: a..-s 
o{J a(3EI+ "'f6EI-

where 1± are index sets depending on the a.;. By (16) , this becomes 

e, +em+;= [ eo + [ em+p- [ e,.., - [ emt6• 
a{JeI+ afJEJ+ "'fdE/- "'(6EI-

From this expression, it is clear that there exists an 1 $ i1 $ n such that ( ii1) E 1+. Subtracting 
llii1 from both sides, we get 



e.n+i - em+i1 = L ea + L e.n+/3 - L e-y - L em+o' 
afJEl{ a{JEit -ycEJ- -yoEJ-

where It= J+ \ {(ii1)}. Now if i1 = j, we are done. If not, then from the expression, it is clear 
that there exists an 1 $ i2 S m such that (i2i1) E 1-. Subtracting ~ 2i 1 = ei - em+ii from both 
sides, we get 

em+, +e~·= I: ea+ I: e.n+.0 - I: e-y- I: em+o, 

a{JE~ a/3€~ ~E~ ~E~ 

where 12 = 1- \ {(i2i1)}. F,qua.tion (20) now follows by repeating the arguments again until 11- is 
empty. Since B is a basis, it is clear that (20) is unique. 

In the following, we consider how to iterate from one simplex tableau to the next. 

Update of the Bolution x. 
Let a,i be the entering vector and a.!11 be the leaving vector.· Then the solution Xij are updated ' 
according to 

{ 

AB _ B B Y(a/3)(st) 
Xa{J - Xa/3 - Xuv 

Y(uv)(at) 
B 

• Xuv 
Xuv = 

Y(uv)(st) 

if (af3) /: (uv) 

(21) 

This equation is to be compared with the updating rule in simplex method: 

if i /: r 

But by Theorem 7.3, the pivot element Y(uv)(st) will always be equal to 1 and that the other Y(afJ)(st) = 
±1 or 0. Therefore, we see that (6.9) can be rewritten as 

(22) 

The property (6.10) is usually referred to as inte,yer property. It shows that if the starting basic 
feasible solution xis an integral vector (i.e. all entries are integer), then at each subsequent itm·.tion, 
the solution x is also an integral vector. In particular, the optimal solution x• is also an integral 
vector. 

We remark that the integer property of transportation problems is derived from the fact that 
all entries of Yii can either be 1, -1 or 0. Thus by recalling Theorem 6.3, we see that if the coefficient 
matrix of a linear programming problem is totally unimodular, then the problem will have the iuteger 
property. 

Update of tableau entriea Yi; . 
For usual simplex method, the tableau entries Yi are updated by the elementary row o ,erations: 

{ 

• Yii 
YB =YB· - -I • y . ,., 
• YBr 
YBr=­

Yrj 

ifi /: r 
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In our notations, we then have 

{

• Y~0~fl 
Y(o,B)(if) = Y(o.B)(if) -

Y(uu)(at) 

• Y(uu)(ij) 
Y(uu)(ij) = 

Y(uu)(at) 

if (a/3) :/- (uv) 

Since the pivot element Y(uv)(at) is always equal to 1, we have 

{ 

Y(o,B)(if) : Y(o,B)(ij) - Y(uv)(ij) 

Y(uu)(ij) - Y(o,B)(ij) 

Computation of Zif - e;;. 

Recal1 that in the simplex method, 

if (a/3) :/- (uv) 

z; - c; : c~;Y; - c; : L cBiYii - c1. 
:z1EB 

Hence in our notations, we have 

Zij - Cij = L Y(o.B)(ij)~.B - Cij• 

:z(<>PJEB 

(23) 

Because of the simple algebraic structure of the transportation models, it is not necessary to 
use the simplex tableau, which is of size (m + n + 1) by (mn + n + n + 1), to hold all necessary 
.information. In the following, we will construct a different tableau, called the transportation tableau, 
that can hold the same pieces of information and yet is easy to be handled. For the transportation 
model in (13) , its tra.nsportation tableau consists of m by n boxes and is of the form 

Supply 

C1n 
81 

X1n 

C2n 

X2n 

S; 

Xml 

Demand 



In the transportation tableau, nonbasic variables (i.e. those a., not in the basis) are not written out 
explicitly. 

Recall that simplex tableau contains the following information: 

(i) The current solution in the b column. 

(ii) The x0 row contains the reduced cost coefficients z3 - c;. 

(ill) The transformed columns of A, denoted as usual by y1. They are related to the columns a; 
of A by (2.20): y1 = B-1a;. 

(iv) The current basic variables. 

We will see th.at the transportation tableau can be manipulated easily to give us these necessary 
pieces of information. For one thing, according to our convention on the transportation tableau, , 
those variables that are not listed in the tableau are nonbasic. Those variables that are listed are 
~ic and their values are the values of the current basic feasible solution. Next we show by an 
example how to compute the current coefficient matrix Y(afJ)(ii) and the corresponding reduced cost 
coefficient z,; - c.;. 

Example . Let us consider a problem with eight variables x,;, 1 s i s 2, 1 s j S 4. We then 
have the following 2-by-4 transportation tableau. 

X11 X12 

X22 X23 X24 

Since rank A = 2 + 4 - 1 = 5, there will be five ~ic variables in any basic feasible solutions of the 
problem. According to our convention, xn, x12, x22, X23 and X24 are the current basic variable. Thus 
a11, a12, a22, a23 and a24 are the basis vectors. The other three vectors are just linearly combinations 
of these five vectors. For example, 

Thus Y(22)(21) = Y(11)(21) = 1 and Y(12)(21) = -1. Therefore, according to (23), 

Similarly, we have 

i.e. Y(12)(13) = Y(23)(13) = 1 and Y(2'2)(13) = -1. Therefore, 

Finally, 

and hence Y(12)(14) = Y(24)(14) = 1 and Y(22)(14) = -1. Thus we have 

We remark that a loop is formed each time. For example, for x14, we have the following loop. 

Simplc:c /lfe1h,,d 
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X11 X12 

X22 X23 X24 

The loop starts with a nonbasic variable, passes through a sequence of basic variable.5 (stepping 
stones) and finally returns to the starting nonbasic variable. ·This is a consequence of Theorem 7.4. 
We note moreover that for ea.ch of these nonbasic variable, there exists one a.nd only one such loop. 
In fact, by Theorem 7.4, if there are two such loops, then the nonbasic vector can be e~ressed in 
terms of two different linear combinations of vectors in the basis. This will be a contradiction to the 

· . linear independence of the basic vectors. 

EXERCISE: 
Solve the following LP problems using the Simplex Method 

1. maximize P = 70x1 + 50x2 

subject to 4x1 + 3x2 $ 240 

2x1 + X2 $ 100 

X1,X2 > 0 

p == 4100, X1 = 30, X2 = 40 

2. maximize P= l0x1 + 5x2 

subject to 4x1 + x2 < 28 

2x1 + 3x2 < 24 

X1,X2 > 0 

p = 80, X1 = 6, X2 = 4 
3. maximize P = 70x1 + 50x2 + 35xa 

subject to 4x1 + 3X2 + X3 $ 240 

2x1 + X2 + X3 < 100 

X1,X2,X3 > 0 

p = 4550, X1 = 0, X2 = 70, X3 ::: 30 

4. maximize p = 2x1 + X2 

subject to 5x1 +x2 $ 9 

Xt +x2 < 5 

X1,X2 > 0 

p = 6, X1 = 1, 't: = 4 

5. maximize P = 30x1 + 40x2 

subject to 2X1 + X2 $ 10 

X1 +x2 < 7 

Xt + 2X2 < 12 

X1,X2 ? 0 

P = 260,xi = 2,x2 = 5 



8 Compound Interest 
and Annuities 

Chapter Includes: 
l. Certain Types of Interest Rates 

2. Basic Concept in finance 

3. Time Value of Money 

4. Future Value Vs. Present Value 

5. Computing Present Value 

6. Computing Future Value 

7. Value with and without Compounding 

8. Future Value with and without Compounding 

9. Compound Value 

l 0. Effective Interest Rate 

11: Continuous Compounding 

12. Annuity 

13. Regular Annuity Vs. Annuity Due 

14. Present Value of a growing annuity 

15. Present Value of Perpetuity 

16. Future value of a growing annuity 

17. Debentures 

8.1 Certain Types of Interest Rates 

A. Credit Market Instruments 

A good first step is to carefully define what we are going to measure. Interest rates apply 
to four types of credit market instruments: 
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Simple loan 

• provides the borrower with an amount of funds (the principal). 

• borrower then pays back the principal amount and interest in one lump sum at 
maturity. 

Fixed-payment loan 

• provides the borrower with an amount of principal 

• the principal and interest are repaid with equal monthly payments for a certain 
period 

• each monthly payment is a combination of principaJ and interest 

Coupon bond 

• purchased at some price 

• entitles the owner to fixed interest payments annually (coupon payments) until 
maturity and a face value payment (or par value) at maturity 

• characterized by the issuer, the maturity, and the coupon rate, which is multiplied 
by the face value to determine the coupon payment 

• Note: your textbook focuses on annual payments, but in fact, almost all coupon 
bonds issued in the United States have semi-annual payments. 

Discount bond (also known as a zero coupon bond) 

• purchased at some price below its face value (or at a discount) 

• entitles the owner to a face value payment at the maturity date. 

• There are no interest payments, hence the name "zero coupon bond." 

The simple loan and the discount bond both consist of only one cash flow while fixed­
payment and coupon bonds have multiple cash flows life of the instrument. Both the 
amount and timing of cash flows are important when comparing financial instruments. To 
make an accurate comparison among instruments with differences in the amount and 
timing of cash flows we need to understand and calculate present value and yield to 
maturity. 

B. Present and Future Value 

I realize many of you are already familiar with present value from other 
accounting/finance courses, but let's review .. 



Present value is based on the fundamental reality that you are not indifferent between 
· getting $100 today versus waiting one year to receive $100. Why? Well in financial 

markets, you could receive interest on that $100 over the course of one year, and end up 
with more than $100 at the end of the year. Toe cost of waiting is the simple interest rate; 
i.e. the interest rate on a simple loan. You lend me $100 at an interest rate of 5% per year, 
then at the end of one year you will receive $100 + (.05 x $100) = $100 x (1 + .05) = 
$105. At the end of 2 years you will receive 

In general, if the simple interest rate is i and the loans are made for n years you will 
receive: 

$100X(1 +i)n 

Toe amount above is known as the future value of $100 in n years. 

So, working backwards, for any amount received in the future we need to discount it to 
the present. In other words, if you are· getting $100 in one year, how· much less would you 
accept in order to get it today? The answer is the present value and will depend on the 
interest rate. 

Suppose again the interest rate· is 5%. If you will receive $100 in one year, what is the 
present value? We ~ant to solve the equation 

PV x (1 + .05) = $100 or 

PV • $lOO • $95.24 
(1 + .05) 

If you will receive $100 in 3 years, what is the present value? 

PV - $lOO = $86.36 
(1 + .05)3 

In general, for the PV of $100, n years from now, with a simple interest rate of i, we use 
the formula 

PV. $100 
(1 + i)1' 

Note that larger values for n and i imply smaller PV. 

C. Yield to Maturity 

Now that we understand present value, we have the tools to calculate the most important 
measure of interest rates, the yield to maturity. Toe yield to maturity is the interest rate 
that makes the discounted value of the future payments from a debt instrument equal to its 
current value (market price) today. Let's look at the yield to maturity for the 4 credit 
market instruments discussed above. 
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Simple Loan 

Th.is is the easiest case, because there is only one cash flow at the end of the loan to 
discount. 

Example 1: Suppose the loan is for $1500, for I year, with a simple interest rate of 6%. 

The value of the loan today is $1500. The future payments on the loan are $1500(1+.06) = 
$1590. 

So the yield to maturity is the i that solves the equation 

$1500 = $1590 
(1 + i) 

Solving for i, (1+ i) = 1590/1500 

i = .06 6% 

, For a simple wan, the yuld to maturity is the same as the simple interest rate. Why? 
Because there is only one cash flow. 

Fix~-Payment Loan 

Th.is case is more complicated due to the multiple payments through the life of the loan. 
Your textbook example uses a loan with annual payments on page 71 . However, the most 
common forms of this type of loan are for monthly payments, like a mortgage, student 
loans or an auto loan. Loans with multiple payments during the year are a bit more 
complicated, as shown in the example below: 

Example 2: Suppose you take out a $15,000 car loan for 5 years, with monthly payments 
of ~300. 

, The value of the loan today is $15,000. The future payments are $300 paymcr.~s O¥er ilie 
next 60 months. 

The yield to maturity is the i that solves the following equat7on: 

Note that since payments are monthly for 5 years, there are a total of 5 x 12 = 60 payment 
periods. Also, the yield to maturity, i, is expressed on an annual basis, so i/12 represents 
the monthly discount rate. Th.is assumes that interest charges compound annually instead 

1 of monthly. If interest charges compounded monthly, then the appropriate monthly 
discount rate is where 

or 

jm • (1 +i)l/12 -1 

http:1500(1+.06


Your textbook is cavalier with this point, but the distinction is important In this 
application, though, it makes very little numerical difference in the answer. 

So how do we solve this for i? Well it is not easy, since there is no way to isolate i in this 
equati_on. It could be done by trial and error (trying values of i until the right-hand.side of 
the equation is $15,000), but that is too time consuming. Titis problem is solved with the 
aid of a table, financial calculator, or spreadsheet programs that do this automatically. A 
financial calculator is not required for this course, so I provide loan or bond table when 
needed. 

Consider. the following loan table: 

Monthly Payments on $15,000 Lo~n 
leld to maturity maturi ars 

6.00% 
6.50% 
7.00% 
7.50°/4 
8.00% 

5 10 
$289.99 $166.53 
$29349 $170.32 
$297 .02 $"17 4 .16 
$300.67 $178.05 

304.15 181 .99 

16 
$126.58 
$130.67 
$134.82 
$139.05 

143.35 

We are looking for a 5 year loan (shaded yellow), and a monthly payment of $300. 
Looking at the table above we see that at 7.5% yield to maturity, the payment is $300.57. 
So the yield to maturity is slightly under 7.5% (7-.42% to be more precise). 

Click below for the "high tech" ways to solve this example: 

Financial Calculator: TI BA II+ 

II 
Excel Spreadsheet 

Coupon Bord 

With the multiple interest payments involved, this case is similar to the fixed payrr.ent 
loan in its ccmplex.ity. Again, your textbook example uses a coupon bond with :mr,ual 
coupon payments on page 72. However, all bonds issued in the United States have couvan 
payments semi-annually, or every 6 months, including Treasury notes, Treasury bonds, 
and corporate bonds. So the example below also uses 6-month payments. 

Example 3 : Consider a 2-year Treasury note with a face value of $10,000, a coupon rate 
of 6%, and a price of $9750. 

So the yield to maturity will solve the equation: 
bond price= PV(future bond payments) 

What are the future payments? 
There are coupon payments every 6 months, and a face value payment at maturity. 

What are the coupon payments? 
The coupon payments are [face value x coupon rate]/2 = $10,000 x .06 x .5 = $300. Note 
that we div_ide by 2 because there are 2 coupon paymen~ in a year. 
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So the payment schedule is 

So the yield to maturity will solve the following equation: 

Note that since payments are every 6 months for 2 years, there are a total of 2 x 2 = 4 
payment periods. Also, the yield to maturity, i, is e.xpressed on an annual basis, so i/2 
represents the 6 month discount rate. This assumes that interest charges compound 
annually instead of semiannually. If interest charges compounded semi-annually, then the 
appropriate discount rate is where 

or 

. (1 ·)l/2- 1 12 - +1 -

Your textbook is cavalier with this point, but the distinction is important. In this 
application, though, it makes very little numerical difference in the answer. 

Like the fixed payment loan, this problem is solved with the aid of a table, financial 
calculator, or spreadsheet programs that do the trial-and-error calculations automatically. 
A financial calculator is not required for this course, so I provide loan or bond table when 
needed. 

Consider the following bond table: 

Bond Prices, 6%coupon rate, semi-~ual paymerts 
yield to maturity maturity Cvearsl 

2 , I 5 10 
5.50% $1009349 $10 216.00 $10 380.68 
6.00% $10.000.00 $10 000.00 $10 000.00 
6.50.% $9907.63 $9 78.9.44 $9 636.52 
7.00°.k 19A18.36 $9,584.17 $9.:289.38 
7.60% S&i728.16' $9,384.04 $8,957.78 · 
8.00% S9:637il01 $9 188.91 $8 640.97 



We are looking for a 2 year bond (shaded yellow), and a price of $9750. Looking at the 
table above we see that at 7.5% yield to maturity, the price is $9726.15. So the yield to 
maturity is slightly under7.5% (7.37% to be more precise). 

Spreadsheets also have financial functions built in. Here is•how to compute the answer to 
example 3 using Excel: 

(1) Click on the cell where you want the answer displayed. 

(2) In the "Insert" menu, choose "Function." (or click the function icon in your toolbar, 
[fx]) 

(3) Choose the "financial" function category, and choose "RATE" and a box pops up. 
(4) Now fill in the spaces in the box: Nper '= 4, Pmt == 300, Pv = -9750, Fv = 10000, 
and ignore type 

(5) The formula result displays at the bottom of the box, "Formula result = 
3.683596826%." This is i/2, so multiply by 2 to get the annual yield to maturity of 
7.37% 

Looking at the bond table above, there are 3 important points to be made about the 
relationship between bond prices, maturity, and the yield to maturity: 

• The yield to maturicy equals the coupon rate ONLY when the bond price equals 
the face value of the bond. 

• When the bond price is less than the face value (the bond sells at a discount), the 
yield to maturity is greater than the coupon rate. When the bond price is greater 
than the face value (the bond sells at a premium), the yield to maturity is less than , 
the coupon rate. 

• The yield to maturity is inversely related to the bond price. Bond prices and 
market interest rates nwve in opposite directions. Why? As interest rates rise, 
new bonds will pay ru,gher coupon rates than existing bonds. The prices of existing 
bonds fall in the s~ndary market, so the yield to maturity rises. This negative 
re'lalwnship be.tween inurfst rau and value is true for all debt securities, not just 
coupon bonds. 

Discount (Zero coupon) Bond 

Because discount bonds have only one payment at maturity, it yield to maturity is easy to 
calculate and is similar to that of a simple loan. Most discount bonds have a maturity of 
LESS than one year, so the example below looks at such a case: 

Example 4: Consider a Treasury bill with 90 days to maturity, a price of $9875, and a 
face value of $10,000. 

The current value is $9850, and the only future payment is $10,000 at maturity. However, 
we do not wait a year for tbis payment but only 90 days so we need to adjust the 
discounting for this. 

The yield to maturity solves the following equation: 
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Solving for i, 

[
1 + i(~)] "' $10,000 

. 365 $9850 

i( 90)"' $10,000 -1 
365 $9850 

i(~) ... $10,000 - 9850 
365 $9850 

i • $10,000- 9850 X 365 _ 6_ l80/o 
$9850 90 

TI.tis method is the convention in financial markets, known as the bond equivalent basis. 

If you use a financial calculator you may come up with a different answer: 
If you do the following on your financial calculator, 

10000 [FV] 
9850 [+/-] [PV] 
0 [PMT] 
91/365 [NJ 
(CPT] [I/Y] 

you come up with i = 6.32%. Which is greater than our lecture notes calcuiation of 6.18%. 
W .1y? Because you instructed you calculator to annualize i by compounding everv 91 
days. The calculator solved the equation: 

$9850 _ $10,000 
(1 + i) (90/36.S) 

w:iille tbe methorl. '-l.bove makes sense and is a legitimate measure of an interest rate, the 
method in the lecture notes, known as a bond equivalent basis, is what we use by tradition 
in financial markets. 

In general, the yield to maturity is found by the formula 

where F is the face value, P is the bond price, and d is the days to maturity 

D. Current Yield 

The yield to maturity is the truest measure of the interest rate. However there are other 
measure out there developed for their computational convenience. It this day of cheap 
computing, it is easy to forget that calculators were not available until 1975 (and then cost 



$200 for one that could just do arithmetic!). Bonds traded long before that, so traders used 
yield measures that approximated the yield to maturity but were easier tQ calculate. 

The current yield is an approximation used for coupon bonds. It is simply the annual 
coupon payment divided by the price of the bond: 

. C 
l =­

c p 

wh~re C is the coupon payment and P is the bond price. This is obviously a lot simpler 
that the yield to maturity 

1be cw:rent yieJ d is a better approximation 

" :: JI l.-nger maturity bonds and 

• when the price of the bond is close to its face value. 

Exampk 5: Consider a 2-year Treasury note with a face value of $10,000, a coupon rate 
of 6%, and a price of $9750. 

the current yield is 

Recall that the true yield to maturity, from example 3, is 7.37%. So in this example, the 
approximation is lousy because it is only a 2-year bond and it is selling at 25% below its 
face value. 

E. Discount Yield 

Also known as the yield on a discount basis, the discount yield is used by dealers to 
quote the interest rates on U.S. Treasury bills. Again, this a computationally convenient 
approximation of the yield to maturity. 

. F-P 360 
ldt, =--X-

f d 

Compare this to the formula for the yield to maturity: 

Note there are two major differences: 

(1) The yield to maturity takes the discount (F-P) as a proportion of the bond price, 
while the discount yield takes the discount as a proportion of the face value. 

(2) The yield to maturity uses a 365-day year while the discount yield uses a 360-day 
year. 

Both of these differences make the arithmetic easier in the case ()f the discount yield, but 
the also cause . the discount yield to understate the true yield to maturity (F is-always 
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greater than P and 365 is always greater than 360). The discount yield will always be less 
than the yield to maturity for any zero coupon bond. 

Example 6: Consider a Treasury bill with 90 days to maturity, a price of $9850, and a 
face value of $10,000. 

. _ 10,000 - 9850 360 015 4 60.I 
let, - -----X- •. X - ;,o 

10,000 90 

This is slightly less than the yield to maturity which is 6.18% (example 4). 

Wow, this is a lot of stuff to think about. What next? I suggest if you want some more 
practice with calculating various interest rates, try the problems at the end of chapter 4, 
page 90. There are solutions in the back of the book for the odd numbered proble_ms. 

Il. Other Measurement Issues 

Understanding what the interest rate does and does tell you is as important as measuring 
the interest rate in the first place. Here are a couple of issues in interest rate measurement. 

A. Interest Rates vs. Returns 

The yield to maturity assumes that the bond is held until maturity. If that is not true, then 
fluctuations in the bond price (which occur with interest rate fluctuations) will affect the 
return, or the gain to the investor from holding this security. 
Toe return for holding a bond between periods t and t+ I is 

RET - C+Pt+l -Pt 
pt 

where Pt is the initial price and Pt+ I is the price at the end of the holding period. 

We can rewrite this formula as 

Toe last term is the rate of capital gain, g, or the change in the bond price relative to the 
initial bond price. So a bond's return can be rewritten as 

A bond's return is identical to the yield to maturity if the holding period is identical to the 
time left to maturity. 

B. Maturity and Bond Price Volatility 

Any bond price moves in the opposite direction of interest rates, but what determines how 
much a bond's price fluctuates, or in other words, it volatility? Let's reconsider the bond 
table from part I, example 3: 



Bond Prices,.S°.kcoupon rate, seml-amual payments 
yield to maturity maturitv (years) 

2 5 10 
5.50% $10 093.49 $10 216.00 $10,380.68 

·, , ,;:-;.~.-
6~0.0°A,· '·' s1Q;ooo.oo $10,000.QQ $1(f,000.00 
6.50% $9 907.63 $9 789.44 $9 .636.52 
7.00% $9 816.35 $9 584.17 $9 289.38 
7.50% $9 726. 1.5 $9 384.04 _$8,957.78 

' 8''.QO% u;637.0t $9,1$8~91 $8,640 .. 97 

Look at each bond's price (the 2-year, 5-year, and IO-year bonds) as the yield to maturity 
rises from 6% to 8%. The prices fall for all of the bonds, but by different amounts. The 
price on the 2-year bond falls less than $400 or less than 4%. The price on the IO-year 
bond falls by more than $1300 or more than 13%. This brings to the principle bond 
characteristic that affects price volatility: Prices (and thus returns) are more volatile for 
llmg-term bonds than short-term bonds. In other words, long-term bonds luwe greater 
interest-rate risk. 

Why is this the case? Intuitively, with a long-term bond, you are "locked in" to a coupon 
- rate for a longer period of time. So if newer bonds are issued with lower coupon rates, 

your long-term bond becomes much more valuable. If new bonds have higher coupon 
rates, your long-term bond becomes much less valuable. For a bond with less than 1 year 
left until maturity, the change in interest rates will not matter that much. The 
consequences of changing interest rates are much more serious for bonds with longer 
times left until maturity. 

C. Real vs. Nominal Interest Rates 

Up until now, we have not accounted for the effects of inflation on the return or interest 
rate on a bond. While the owner of a bond is entitled to future payments, in an economy 
with inflation, the purchasing power of those payments is declining over time. It is pretty 
much a given that $10,000 in 2011 will buy less than $10,000 today. 

The interest rate (yield to maturity) we calculate in Part I is specifically the nominal 
interest rate, which does not consider the impact of inflation. Instead, expected price 
changes are reflected in the real interest rate. The relationship between the real and 
nominal interest rate, known as the Fisher equation, is given by: 

i - i + 1t
8 

. z 

or 

i ai - ~• r 

e 
Where 1t is the expected inflation rate. 

So the nominal interest rate is the sum of the real interest and the expected inflation rate. 
· The real interest is a truer measure of the cost of borrowing. Lower real interest rates 
increase the incentive to borrow (while reducing the incentive to lend). Higher real 
interest rates decrease the incentive to borrow (while increasing the incentive to lend). 
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8.2 Basic Concept in finance 

The functions of finance in an organization is intertinked with other managerial 

responsibilities and in many instances, the finance manager could also done the 

role of a managing director. For the smooth functioning as well as to achieve 

excellence, organizations have to concentrate on the financial impact of a 

decision and its consequences. This also helps the organization to aim at a 

desired competency level against its competitors. 

• In organizations, flow of money occurs at various points of time. In order to 

evaluate the worth of money, the financial managers need to look at it 

from a common platform, namely one time duration. This common 

platform enables a meaningful comparison of money over different time 

periods. 

• An important principle in financial management is that the value of money 

depends on when the cash ffow occurs - which implies Rs.100 now is 

worth more than Rs.100 at some future time. 

8.3 Time Value of Money 

Common Platf onn for Equatinfl Monetary Bows 

- .._.I I ' 
-... 
-~ 

_...,, ---... -... -... 
-4 .... 

8.3.1 The Time-Value of Money 

Money like any other desirable commodity has a 



price. ff you own money, you can, 'renf it to someone else, say a banker, who 

can use it to earn income. This 'rent' is usually in the form of interest. The · 

investor's reb.Jrn, which reflects tne time-value of money, therefore indicates that 

there are investment opportunities available in the market. The return indicates 

that there is a 

- risk-free rate of return rewarding investors for forgoing immediate 

consumption 

- compensation for risk and loss of purchasing power. 

• Risk: An· amount of Rs.100 now is certain, whereas Rs. 100 receivable 

next year is less certain. This 'uncertainty' principle affects many aspects 

of financial management and is termed as risk value of money. 

• Inflation: Under innationary conditions, the value of money, expressed .in 

terms of its purchasing power ove~ goods and services, declines. Hence 

Rs.100 possessed now is not equivalent to Rs.100 to be received in the 

future. 

• Personal consumption preference: Most of us have a strong preference 

for immediate rather than delayed consumption. As a result we tend to 

value the Rs.100 to be received now more than Rs.100 to be received 

latter. 

8.4 Future Value Vs. Present Value 

Future value (FV) and present value (PV) adjust all cash flows 

to a common time. This is relevant when we want to compare the cash flows 

occurring at different periods of time. Either in terms of projects, performance or 

turnover, the cash flows accrue to the company at different stages. The 

evaluation of all these cash flows are true when they are all brought to the same 

base period. 
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8.5 Computing Present VaJue 

In financial parlance, a value of currency is not kept idle. The 

amount, if invested would certainly bring additional returns in the future. This 

future expectation from the present investment is termed as the future value. 

Let us assume x amount is invested now and the investor expects 

r% to accrue on the investment one year ahead. This is translated 

into present and future values as follows: 

PV = Rs. x 

FV = Rs. X + (r • x) 

, Computing Future Value - ExampJe 

Let us assume Rs.1,000 is invested now and the investor expects 

5% to accrue on this investment one year ahead. This is translated 

into present and future values as follows: 

PV = Rs.1,000 

FV = Rs.1,000 + (.05 • 1,000) = Rs.1,050. 

8.6 Computing Future Value 

This can be restated as FV = PV • (1 +r) 

This relationship leads to the following concept of discounting the future value to 

arrive at the present value i.e., 

PV = FV / (1 + r) 

This is the formula for equating the Mure value that is associated at the end of 

1st year. Now the concept of time over a tonger duration can be easily brought 

into the above equation, where 'n' defines the time duration after which the cash 

flows are expected. 

Computing Present Value- Example 

Let us assume that Rs.1 ,000 is to be received at the end of 1 year from now and 
the investor expects 5% rate of return on this investment. 



Here FV = Rs.1 ,000 

Hence the present value is computed as: 
PV = FV / (1 + r) 

= Rs.1000 / (1 .05) = Rs.952. 

8. 7 Value with and without Compounding 

• Interest without compounding is a simple interest formula i.e., Pnr/100 
Where: Pis the principle, n is the number of years and r is the interest 
rate. 

• Interest with annual compounding adds the interest received earlier to the 

principle amount and increases the final amount that is received from the 

investment. Hence, the FV of an investment for a two year duration with 

annual compounding would be: 

FV = PV * (1+r)* (1+r) = PV * (1+r)l'2. 

• Hence Present Value is: 

PV = FV I (1+r)"2. 

• This equation can be generalized for 'n' years as: 

PV = FV I (1 + r)lln 

8.8 Future Value with and without Compounding 

VALUE 
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8.9 Compound Value 

In compounding, it is assumed that a certain sum accrues at the end of a time 

duration, which is again reinvested. In short, when a sum is invested in a year, it 

will yield interest and the interest is reinvested for the next year and so on till the 

time when withdrawal is made. The 3 year or 4 year bank deposit is a typical 

example of this annual interest compounding. Here: 

FV = Principal + interest 

FV = P(1 +r)11n 

The term (1 +r)An is the compound value factor (CVF) or a 

lump sum of Re.1, and it always has a value greater than 1 for positive r, 
indicating that CVF increases as rand n increase. 

Compound Value - Example 

Assume a lump sum of Rs.1,000 is deposited in a bank fixed deposit for 3 years 

for an interest rate of 10% per annum. 

FV = Principal + interest 

FV = P(1+r)An 

FV = 1000 X (1+.10)"3 

= 1000 X 1.331 

= Rs.1,331. 

8.9.1 Compound In Less Than a Duration 

• Usually, it is common practice to compound the interesc on a yearly basis. 

But, there are instances when compounding is done on a half-yearly, 

quarterly, monthly or a daily basis. The half-yearly interest rates irrlicate 

that interest is payable semiannually, i.e., interest is received r%l2 twice 

every year. When the principle of compounding is applied, this implies that 

the t%/2 received twice an year will yield an actual rate which is higher 

than the declared (r"/4) rate. This actual rate is called the effective annual 

rate. 



• For instance, let us take an illustration of a banker declaring a 10% p.a. 

interest payable semiannually. This implies that at the end of the year the 

amount received for every one rupee will be 1 • (1+[10%i2]) • (1+[10%i2]) 

i.e., (1 .05) • (1.05) = (1.05)"2 = 1.1025. 

• The Effective interest rate is 10.25% 

8.10 Effective Interest Rate 

The effective interest rate in the previous example was computed as 1 .1025 - 1 = 
.1025 and in percentage terms it will be 10.25%. The effective rate of interest is 
hence 10.25% and not 10%. This can be expressed through the following 
formula: 

FV = PV (1 + r/m)"(m'"n) 

where m is the number of times within a year interest is paid. 

W1en half-yearly interest payments are made 'm' will be 12/6 i.e., 2. W1en 
quarterly interest payments are made 'm' will be 1213 i.e.l 4. 'Nhen monthly 
compounding is done then 'm' will be 1211 i.e .• 12. Compounding on a daily 
basis, 'm' will be 365/1 i.e., 365. This is referred to as multi-period compounding. 

8.11 Continuous Compounding 

Sometimes compounding may be done continuously. For example, banks may 
pay interest continuously; they call it continuous compounding. It can be 
mathematically proved that the continuous compounding function will reduce to 
the following: 

FV = PV x {e"x} 
When x = (r • n) and e is mathematically defined as equal to 2.7183. 

~ontinuous Compounding - Example 

The present value of an investment is Rs.1 ,000. At 10% p.a. interest rate 
at the end of 5 years, the future value of this investment with continuous 
compounding will be: 

FV = 1,000 x {e".5} ::: R$.1 ,648.72 

When x = (r • n = .1 x 5 = .5) and e is mathematically defined as equa' to 
2.7183. 
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Similarly, the present value of a future flow of Rs.100 at 10% p.a. 
interest rate to be received 5 years hence with continuous compounding will be 

PV = FV / {e".5} = 100 / {e".5} = Rs.60.65. 

8.12 Annuity 

There can be a uniform cash flow accrual every year over a period of 'n' years. 

This uniform flow is called "Annuity". 

An annuity is a fixed payment (or receipt) each year for a specified 
number of years. The future compound value of an annuity as follows: 

FV = A {[(1 +r)"n - 1 ]/ r} 

The term within the curly brackets O is the compound value factor . 
for an annuity of Re.1, and A is the annuity. 

The present value of an annuity hence will be 

PV = A {[1 - 1/(1 +r)"n]/r} 

Annuity - Example 

The Future value of Rs.10 received every year for a period of 5 years at an 
assumed interest rate of 10% per annum will be 

FV = 10 {[(1 +0.1 )"5 - 1 ]/ 0.1} = Rs.61.051 

The Present value of Rs.100 to be received every year in the next 

five years at an assumed interest rate of 10% per annum will be 

PV =100{[1 - 1/(1+0.1 )"5]/0.1}=Rs.379.08 

8.12.1 Resent Value of Perpetuity 

Perpetuity is an annuity that occurs indefinitely. In perpetuity, time period, n, is so 
large (mathematically n approaches infinity) that the expression (1+r)"n in the 
present value equation tends to become zero, and the.formula for a perpetuity 
simply condenses into: 

PV=Nr 

where A is the annuity amount occurring indefinitely and r is the interest 
rate. 

http:J\5VO.l}=Rs.379.08
http:Rs.60.65
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8.13 Regular Annuity Vs. Annuity Due 

• When an annuity's cash payments are made at the end of each period, it 
is referred as regular annuity. On the other hand, the annual 
payments/receipt can also be made at the beginning of each period. This 
is referred to as annuity due. 

• Lease is a contract in which lease rentals (payment) are to be paid for the 
use of an asset. Hire purchase contract involves regular payments 
(installments) for acquiring (owning) an asset. A series of nxed payments 
starting at the beginning of each period for a specified duration is called an 
annuity due. 

8.13.1 Annuity Due 

The formula for computing value of an annuity due is: 

FV = A[(1 + r) + (1 +r)"2+ (1 +r)"3 + .... + (1 +r)"n-1] 

FV = A {[(1 +r)"(n-1) -1] / r} 

Hence, 

PV = A {[1 - 1 /(1 +r)"n]/r} • (1 +r) 

PV = A(PVRA,r)*(1 +r) 

Where PVAR is present value of regular annuity and r is the interest rate. 

Annuity Due - Example 

The future value of Rs.1 O received in the beginning of each year for a 5 year 

duration at an assumed rate of 10% p.a. will be: 
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FV = 10 {[(1 +0.1 )"'(5-1) -1 l / 0.1} = Rs.46.41. 

The present value of Rs.100 received in the beginning of each year 

for 5 years at an assumed interest rate of 10% p.a. will be: 

PV = 100 {[1 - 1/(1 +1.1 )"5]/0.1 } x (1 +0.1 )= Rs.416.98. 

8.13.2 Multi Period Annuity Compounding 

The compound value of an annuity in case of the multi-period compounding is 
given as follows: 

FV = c\ <{[(1 +r/m)"(n x m)] -1 } /(rim)> 

PV = A <{1 -(1 /(1 +r/m)"(n x rr)]} / (rim)' 

In all instances, the discount rate will be (r/m) and the time horizon 
will be equal to (n x m). 

8.14 Present Value of a growing annuity 

An annuity may not be a constant sum through the time duration, it 
may also grow at a rate of g% every year. This is referred as a growing annuity. 
'Mlen there is a growth for specific nu.mber ofyears, the present value of an 
annuity is stated using the following formula: 

p "\T = .,.o,.. [ 1 
r- g 

1 (1 + g)n] 
r - g x (1 + r)n 

Present Value Of A Growing Annuity - Example 

An annuity of Rs.100 is expected to grow at a rate of 2% eve-:y year. Assuming 
the interest rate as 10% per annum the present value for this growing annuity for 
a 5 year dura!ion will be: · 

PV = 100 x {(1/0.08)-[(1 /0.08)*(1.02)"5/(1 .1 )"51} 

= Rs.393.07. 

FUTURE VALUE OF A GROWING ANNUITY 

Future value of a growing annuity can be defined by the following formu!:?: 

http:Rs.393.07
http:Rs.416.98
http:Rs.46.41


Future Value Of A Growing Annuity - Example 

Future value of an annuity of Rs.10 growing at 2% every year with an 
assumed rate of interest at 10% for five years is computed as: 

FV = 10 x {[1.1 AS/0.08]-[1 .02"5/0.08]} 

= Rs.63.30 

8.15 Present Value of Perpetuity -

!n financial decision-making there are number ofsituatipns where 
cash flows may grow at a compound rate. Here, the annuity is not a constant 
arr:i)1mt A. but is subject to a growth factor 'g'. Whe'1 the growth rate 'g' is 
constant, the formula can be simplified very easily. The calculation of the present 
va.lue of a constantly growing perpetuity is given by the following equation: 

PV = A/(1 +r) +· A(1 +g)/(1 +r.)A2 + A(1 +g)A2/(1 +r)A3 + ..... 

This equation can be simplified as: 

PV = A/ ( 
r- g) 

8.16 Future value of a growing annuity 

In financial decision-making there are number of situations where cash flows may 
grow at a compound rate. Here, the annuity is not a constant amount A but is 
subject to a growth factor 'g'. VVhen the growth rate 'g' is constant, the formula 
can be simplified very easily. The calculation of the present value of a consta~tly 
growing perpetuity is given by the following equation: 

PV = A/(1 +r) + A(1 +g)/(1 +r)A2 + A(1 +g)"2/(1 +r)"3 + ..... 

T'1'.s equa\ion cc1n :..,e simplifi~rl as: 

PV =A/ (r - g) 

Present Value Of A Growing Annuity Perpetuity -
Example 

The present value of an annuity of Rs.10 growing at 2% every year with an 
assumed rate of interest of 10% to perpetuity is: 

PV =A/ (r - g) 

PV = 10 / (0.1 -Q.02) = Rs.125. 
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8.17 Debentures 

Debentures are creditor ship securities representing long-term indebtedness of a 
company. A debenture is an instrument executed by the company under its common seal 
acknowledging indebtedness to some person or persons to secure the sum advanced. It 
is, thus, a security issued by a company against the debt. A public limited company is 
allowed to raise debt or loan through debentures after getting certificate of 
commencement of business if permitted by its Memorandum of Association. 
Companies Act has not defined the term debenture. 

Debentures, like shares, are equal parts of loan raised by a company. Debentures are 
usually secured by the company by a fixed or floating debentures at periodical intervals, 
generally six months and the company agrees to pay the principal amount at the expiry 
of the stipulated period according to their terms of issue. Like shares, they are issued to 
the public at part, at a premium or at a discount. Debenture--holders are creditors of the 
company. They have no voting rights but their claims rank prior to preference 
shareholders and equity shareholders. Their exact rights depend upon the nature of 
debentures they hold. · 

The capital is not only raised through shares, it is sometimes raised through loans, taken 
in the form of debentures. 

A debenture is a written acknowledgment of a debt taken by a company. It contains a 
contract for the repayment of principal sum by some specific date and payment of 
interest at a specified rate irrespective of the fact, whether the company has a profit or 
loss. Debenture holders are, therefore, creditors of the company. Of course, they do not 
have any right on the profits declared by the company. Like shares, debentures can also 
be sold in or purchased from the market and all the terms used for shares also apply in 
this case; with the same meanings. 

Let us take some examples. 

Example : Find the income perce1,1t of a buyer on 10 % debentures of face value Rs. I 00, 
available in the marketatRs. 125. 

Solution : Income on Rs. 125 is Rs. 10 

10 
Income on Rs. 100 = - - x 100 = Rs. 8 

1255 

Income, in percents, on debe:utures = 8% 

Example : Sha.ma has 1000 shares of par value Rs. 10 each of a company and 200 
debentures of par value Rs. 100 each. The company pays an annual dividend of l 0% and 
an interest of 15% on debentures. Find the total income ofShama and rate ofreturn on 
her jnvestment. 

(
lOOOxl0xl0 ) 

Solution: Dividend on 1000 shares= Rs. 
100 

= Rs. 1000 

( 
200 X 100 X 15 ) 

Annual interest on 200 debentures= Rs. 
100 

= Rs. 3000 



.·. Total income of Sham.a;;:: Rs. 4000 

Total investment ofShama = Rs. ( 1000 x 10 + 200 x 100) = Rs. 30000 

(
4000x100) 

:. Rateofreturn= 30000 %=13.33% 

Debentures can be of following types: 

Redeemable and Irredeemable Debentures 

Redeemable debentures are those which can be redeemed or paid back at the end of a 
specified period mentioned on the debentures or within a specified period at the option 
of the company by giving notice to the debenture holders or by installments as per terms 
of issue. Irredeemable debentures are those which are repayable at any time by the 
company during its existence.No date of redemption is specified. the debenture holders 
cannot claim their redemption. However, they are due for redemption if the company 
fails to pay interest on such debentures or on winding up of the company. They are also 
called perpetual debentures. 

Secured and Unsecured Debentures 

Secured or mortgaged debentures carry either a fixed charg~ on the particular asset of 
the company or floating charge on all the assets of the company. Unsecured debentures, 
on the other hand, have no such charge on the assets of the company. They are also 
known as simple or naked debentures. 

Registered and Bearer Debentures 

Registered debentures are registered with the company. Name, address and particulars 
of holdings of every debenture holders are recorded on the debenture certificate and in 
the books of the company. At the time of transfer, a regular transfer deed duly stamped 
and properly executed is required. Interest is paid only to the registered debenture 
holders. Bearers debentures on the other hand, are transferred by more delivery without 
any notice to the company. Company keeps no record for such debentures. Debentures­
coupons are attached with the debentures-certificate and interest can be claimed by the 
coupon-holder. 

Convertible and Non~nvertible Debentures 

Convertible debentures are those which can be converted by the holders of such 
debentures into equity shares or preference shares, cannot be converted into shares. 
Now, a company can also issue partially convertible debentures under which only a part 
of the debenture amount 'can be converted into equity shares. 
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EXERCISE 

1. What do mean by Inflation? 

2. What is meant by Return? 

3. What is the Interest without compounding? Write formula. 

4. What do mean by Annuity? 
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